Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Suppressing STAT3 activity protects the endothelial barrier from VEGF-mediated vascular permeability.

  • Li Wang‎ et al.
  • Disease models & mechanisms‎
  • 2021‎

Vascular permeability triggered by inflammation or ischemia promotes edema, exacerbates disease progression and impairs tissue recovery. Vascular endothelial growth factor (VEGF) is a potent inducer of vascular permeability. VEGF plays an integral role in regulating vascular barrier function physiologically and in pathologies, including cancer, stroke, cardiovascular disease, retinal conditions and COVID-19-associated pulmonary edema, sepsis and acute lung injury. Understanding temporal molecular regulation of VEGF-induced vascular permeability will facilitate developing therapeutics to inhibit vascular permeability, while preserving tissue-restorative angiogenesis. Here, we demonstrate that VEGF signals through signal transducer and activator of transcription 3 (STAT3) to promote vascular permeability. We show that genetic STAT3 ablation reduces vascular permeability in STAT3-deficient endothelium of mice and VEGF-inducible zebrafish crossed with CRISPR/Cas9-generated Stat3 knockout zebrafish. Intercellular adhesion molecule 1 (ICAM-1) expression is transcriptionally regulated by STAT3, and VEGF-dependent STAT3 activation is regulated by JAK2. Pyrimethamine, an FDA-approved antimicrobial agent that inhibits STAT3-dependent transcription, substantially reduces VEGF-induced vascular permeability in zebrafish, mouse and human endothelium. Collectively, our findings suggest that VEGF/VEGFR-2/JAK2/STAT3 signaling regulates vascular barrier integrity, and inhibition of STAT3-dependent activity reduces VEGF-induced vascular permeability. This article has an associated First Person interview with the first author of the paper.


Suppressing STAT3 activity protects the endothelial barrier from VEGF-mediated vascular permeability.

  • Li Wang‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2020‎

Vascular permeability triggered by inflammation or ischemia promotes edema, exacerbates disease progression, and impairs tissue recovery. Vascular endothelial growth factor (VEGF) is a potent inducer of vascular permeability. VEGF plays an integral role in regulating vascular barrier function physiologically and in pathologies, such as cancer, ischemic stroke, cardiovascular disease, retinal conditions, and COVID-19-associated pulmonary edema and sepsis, which often leads to acute lung injury, including acute respiratory distress syndrome. However, after initially stimulating permeability, VEGF subsequently mediates angiogenesis to repair damaged tissue. Consequently, understanding temporal molecular regulation of VEG-Finduced vascular permeability will facilitate developing therapeutics that achieve the delicate balance of inhibiting vascular permeability while preserving tissue repair. Here, we demonstrate that VEGF signals through signal transducer and activator of transcription 3 (STAT3) to promote vascular permeability. Specifically, we show that genetic STAT3 ablation reduces vascular permeability in STAT3-deficient endothelium of mice and VEGF-inducible zebrafish crossed with CRISPR/Cas9 generated genomic STAT3 knockout zebrafish. Importantly, STAT3 deficiency does not impair vascular development and function in vivo. We identify intercellular adhesion molecule 1 (ICAM-1) as a STAT3-dependent transcriptional regulator and show VEGF-dependent STAT3 activation is regulated by JAK2. Pyrimethamine, an FDA-approved antimicrobial agent that inhibits STAT3-dependent transcription, substantially reduces VEGF-induced vascular permeability in zebrafish, mouse, and human endothelium. Indeed, pharmacologically targeting STAT3 increases vascular barrier integrity using two additional compounds, atovaquone and C188-9. Collectively, our findings suggest that the VEGF, VEGFR-2, JAK2, and STAT3 signaling cascade regulates vascular barrier integrity, and inhibition of STAT3-dependent activity reduces VEGF-induced vascular permeability in vertebrate models.


Activation of AMPK/miR-181b Axis Alleviates Endothelial Dysfunction and Vascular Inflammation in Diabetic Mice.

  • Chak-Kwong Cheng‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2022‎

Hyperglycemia in diabetes mellitus impairs endothelial function and disrupts microRNA (miRNA) profiles in vasculature, increasing the risk of diabetes-associated complications, including coronary artery disease, diabetic retinopathy, and diabetic nephropathy. miR-181b was previously reported to be an anti-inflammatory mediator in vasculature against atherosclerosis. The current study aimed to investigate whether miR-181b ameliorates diabetes-associated endothelial dysfunction, and to identify potential molecular mechanisms and upstream inducer of miR-181b. We found that miR-181b level was decreased in renal arteries of diabetic patients and in advanced glycation end products (AGEs)-treated renal arteries of non-diabetic patients. Transfection of miR-181b mimics improved endothelium-dependent vasodilation in aortas of high fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice, accompanied by suppression of superoxide overproduction and vascular inflammation markers. AMPK activator-induced AMPK activation upregulated miR-181b level in human umbilical vein endothelial cells (HUVECs). Chronic exercise, potentially through increased blood flow, activated AMPK/miR-181b axis in aortas of diabetic mice. Exposure to laminar shear stress upregulated miR-181b expression in HUVECs. Overall, our findings highlight a critical role of AMPK/miR-181b axis and extend the benefits of chronic exercise in counteracting diabetes-associated endothelial dysfunction.


The protective effect of pericytes on vascular permeability after hemorrhagic shock and their relationship with Cx43.

  • Shuangshuang He‎ et al.
  • Frontiers in physiology‎
  • 2022‎

Vascular hyperpermeability is a complication of hemorrhagic shock. Pericytes (PCs) are a group of mural cells surrounded by microvessels that are located on the basolateral side of the endothelium. Previous studies have shown that damage to PCs contributes to the occurrence of many diseases such as diabetic retinopathy and myocardial infarction. Whether PCs can protect the vascular barrier function following hemorrhagic shock and the underlying mechanisms are unknown. A hemorrhagic shock rat model, Cx43 vascular endothelial cell (VEC)-specific knockdown mice, and VECs were used to investigate the role of PCs in vascular barrier function and their relationship with Cx43. The results showed that following hemorrhagic shock, the number of PCs in the microvessels was significantly decreased and was negatively associated with an increase in pulmonary and mesenteric vascular permeability. Exogenous infusion of PCs (106 cells per rat) colonized the microvessels and improved pulmonary and mesenteric vascular barrier function. Upregulation of Cx43 in PCs significantly increased the number of PCs colonizing the pulmonary vessels. In contrast, downregulation of Cx43 expression in PCs or knockout of Cx43 in VECs (Cx43 KO mice) significantly reduced PC colonization in pulmonary vessels in vivo and reduced direct contact formation between PCs and VECs in vitro. It has been suggested that PCs have an important protective effect on vascular barrier function in pulmonary and peripheral vessels following hemorrhagic shock. Cx43 plays an important role in the colonization of exogenous PCs in the microvessels. This finding provides a potential new shock treatment measure.


Locomotor mal-performance and gait adaptability deficits in sickle cell mice are associated with vascular and white matter abnormalities and oxidative stress in cerebellum.

  • Luis E F Almeida‎ et al.
  • Brain research‎
  • 2020‎

Patients with sickle cell disease (SCD) can develop strokes and as a result, present neurologic and neurocognitive deficits. However, recent studies show that even without detectable cerebral parenchymal abnormalities on imaging studies, SCD patients can have significant cognitive and motor dysfunction, which can present as early as during infancy. As the cerebellum plays a pivotal role in motor and non-motor functions including sensorimotor processing and learning, we examined cerebellar behavior in humanized SCD mice using the Erasmus ladder. Homozygous (sickling) mice had significant locomotor malperformance characterized by miscoordination and impaired locomotor gait/stepping pattern adaptability. Conversely, Townes homozygous mice had no overall deficits in motor learning, as they were able to associate a conditioning stimulus (high-pitch warning tone) with the presentation of an obstacle and learned to decrease steptimes thereby increasing speed to avoid it. While these animals had no cerebellar strokes, these locomotor and adaptive gait/stepping patterns deficits were associated with oxidative stress, as well as cerebellar vascular endothelial and white matter abnormalities and blood brain barrier disruption, suggestive of ischemic injury. Taken together, these observations suggest that motor and adaptive locomotor deficits in SCD mice mirror some of those described in SCD patients and that ischemic changes in white matter and vascular endothelium and oxidative stress are biologic correlates of those deficits. These findings point to the cerebellum as an area of the central nervous system that is vulnerable to vascular and white matter injury and support the use of SCD mice for studies of the underlying mechanisms of cerebellar dysfunction in SCD.


Resveratrol ameliorates endothelial dysfunction in diabetic and obese mice through sirtuin 1 and peroxisome proliferator-activated receptor δ.

  • Wai San Cheang‎ et al.
  • Pharmacological research‎
  • 2019‎

Sirtuin 1 (SIRT1) activation reduces oxidative stress, inhibits inflammatory responses, and retards cellular senescence in endothelial cells in mouse models of diabetes. However, whether SIRT1 also plays a protective role in vascular dysfunction of diabetic and obese mice is not fully characterized. Previous work showed that peroxisome proliferator-activated receptor δ (PPARδ) is beneficial in diabetic vascular dysfunction. Whether PPARδ is involved in the beneficial effect of SIRT1 on vascular endothelial function is unknown. We used mice with overexpression of endothelial cell-specific human SIRT1 (SIRT1-Tg) and dominant-negative SIRT1 (SIRT1-mut) fed with normal chow and high fat diet to show that expression of functional SIRT1 in endothelium protects against vascular dysfunction in diet-induced obese mice. Endothelial-specific overexpression of SIRT1 improved endothelium-dependent dilation in aortas treated with risk factors including high glucose, angiotensin II, and lysophosphatidylcholine. Oral treatment with resveratrol treatment improves endothelial function in high fat diet fed wild type Ppard-wt but not in PPARδ knockout Ppard-mut mice. Experiments on isolated arteries also showed that the effect of resveratrol or SIRT1 activator CAY10602 was inhibited by PPARδ antagonist GSK0660. Resveratrol increased PPARδ transcriptional activity in endothelial cells. Results demonstrated here indicated that PPARδ contributes to the beneficial effect of SIRT1 to ameliorate endothelial dysfunction in diabetic and obese mice. These results help to understand SIRT1-based strategy for treating vascular and metabolic dysfunction in the context of obesity and insulin resistance.


Curaxin CBL0137 inhibits endothelial inflammation and atherogenesis via suppression of the Src-YAP signalling axis.

  • Huanyu Ding‎ et al.
  • British journal of pharmacology‎
  • 2023‎

Atherosclerotic vascular disease is the leading cause of mortality and morbidity worldwide. Our previous study uncovered that endothelium-specific knockdown of YAP suppresses atherogenesis, suggesting that YAP is a promising therapeutic target against atherosclerotic vascular disease. We established a drug screening platform, which aimed to identify new YAP inhibitors for anti-atherosclerotic treatment.


Effects of Huang Qi Decoction on Endothelial Dysfunction Induced by Homocysteine.

  • Shuang Chu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2016‎

Vascular endothelial dysfunction can be induced by homocysteine (Hcy) through promoted oxidative stress. Huang Qi decoction (HQD) is a traditional Chinese medical formula and its components possess antioxidant effect. The study herein was therefore designed to investigate the effects of HQD at different dosage on endothelial dysfunction induced by Hcy. Tempol and apocynin were used to investigate whether antioxidant mechanisms were involved. Endothelium-dependent relaxation of rat aortas was investigated by isometric tension recordings. Reactive oxygen species (ROS) in human umbilical vein endothelial cells (HUVECs) was determined by DHE staining. The assessment related to oxidative stress and NO bioavailability was performed by assay kits and western blot. In isometric tension experiment, HQD at the dose of 30 or 100 μg/mL, tempol, or apocynin prevented impaired endothelium-dependent relaxation in isolated aortas elicited by Hcy. In cellular experiments, substantial enhancement in NADPH oxidase and ROS generation and reduction in NO bioavailability triggered by Hcy were reversed by pretreatment of HQD at the dose of 100 μg/mL, tempol, or apocynin. The results proved that HQD at an appropriate dosage presented favorable effects on endothelial dysfunction initiated by Hcy through antioxidant mechanisms. HQD can act as a potent prescription for the treatment of endothelium related vascular complications.


Limited AT1 Receptor Internalization Is a Novel Mechanism Underlying Sustained Vasoconstriction Induced by AT1 Receptor Autoantibody From Preeclampsia.

  • Jingwei Bian‎ et al.
  • Journal of the American Heart Association‎
  • 2019‎

Background Angiotensin II type 1 receptor ( AT 1R) autoantibody ( AT 1- AA ) was first identified as a causative factor in preeclampsia. Unlike physiological ligand angiotensin II (Ang II ), AT 1- AA can induce vasoconstriction in a sustained manner, causing a series of adverse effects, such as vascular injury and poor placental perfusion. However, its underlying mechanisms remain unclear. Here, from the perspective of AT 1R internalization, the present study investigated the molecular mechanism of sustained vasoconstriction induced by AT 1R autoantibody. Methods and Results In the current study, we used the vascular-ring technique to determine that AT 1- AA -positive IgG, which was obtained from the sera of preeclamptic patients, induced long-term vasoconstriction in endothelium-intact or endothelium-denuded rat thoracic arteries. The effect was caused by prolonged activation of AT 1R downstream signals in vascular smooth muscle cells, including Ca2+, protein kinase C, and extracellular signal-regulated kinase 1 and 2. Then, using subcellular protein fractionation, cell surface protein biotinylation, and total internal reflection fluorescence, we found that AT 1- AA -positive IgG resulted in significantly less AT 1R internalization than in the Ang II treatment group. Moreover, through use of fluorescent tracing and bioluminescence resonance energy transfer, we found that AT 1- AA -positive IgG cannot induce the recruitment of β-arrestin1/2, which mediated receptor internalization. Then, the effect of sustained AT 1R activation induced by AT 1- AA -positive IgG was rescued by overexpression of β-arrestin2. Conclusions These data suggested that limited AT 1R internalization resulting from the inhibition of β-arrestin1/2 recruitment played an important role in sustained vasoconstriction induced by AT 1- AA -positive IgG, which may set the stage for avoiding AT 1R overactivation in the management of preeclampsia.


Astragaloside IV prevents endothelial dysfunction by improving oxidative stress in streptozotocin-induced diabetic mouse aortas.

  • Yang Zhang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2021‎

Oxidative stress serves a role in endothelial dysfunction exhibited by patients with diabetes mellitus. Astragaloside IV (AS-IV) is a major active ingredient of Radix Astragali, which is considered to exhibit vasoprotective effects through unknown mechanisms. Thus, the current study was performed to investigate the protective effects of AS-IV in streptozotocin (STZ)-induced endothelial dysfunction and to explore whether antioxidant mechanisms were involved. The protective effects of AS-IV on the endothelium-dependent relaxation and contraction of aortic rings were determined by isometric tension recordings. NADPH subunits and endothelial nitric oxide synthase (eNOS) expression was identified via western blotting. Superoxide dismutase and malondialdehyde levels were assayed using ELISA. Furthermore, the generation of reactive oxygen species (ROS) and nitric oxide (NO) was detected via dihydroethidium and 4,5-diaminofluorescein diacetate staining, respectively. The results revealed that STZ-injected mice exhibited increased aortic endothelium-dependent vasoconstriction and decreased vasorelaxation to acetylcholine. However, AS-IV treatment reversed these effects. NG-nitro-L-arginine was subsequently used to completely inhibit impaired relaxation. Accordingly, impaired NO generation was restored following AS-IV treatment by increasing eNOS phosphorylation levels. Furthermore, ROS formation was also depressed following AS-IV treatment compared with that in STZ-injected mice. AS-IV also decreased the expression of various NADPH subunits, including human neutrophil cytochrome b light chain, neutrophil cytosolic factor 1, NADPH oxidase (NOX)2, NOX4 and Rac-1. The results of the current study may provide novel evidence that diabetes-induced vascular injury arises from either the inhibition of eNOS or the activation of NOX-derived ROS generation. In addition, the results warrant further investigation into the application of AS-IV treatment, leading to the improvement of oxidative stress, in patients with diabetes exhibiting endothelial dysfunction.


AMPK-Dependent YAP Inhibition Mediates the Protective Effect of Metformin against Obesity-Associated Endothelial Dysfunction and Inflammation.

  • Lijing Kang‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2023‎

Hyperglycemia is a crucial risk factor for cardiovascular diseases. Chronic inflammation is a central characteristic of obesity, leading to many of its complications. Recent studies have shown that high glucose activates Yes-associated protein 1 (YAP) by suppressing AMPK activity in breast cancer cells. Metformin is a commonly prescribed anti-diabetic drug best known for its AMPK-activating effect. However, the role of YAP in the vasoprotective effect of metformin in diabetic endothelial cell dysfunction is still unknown. The present study aimed to investigate whether YAP activation plays a role in obesity-associated endothelial dysfunction and inflammation and examine whether the vasoprotective effect of metformin is related to YAP inhibition. Reanalysis of the clinical sequencing data revealed YAP signaling, and the YAP target genes CTGF and CYR61 were upregulated in aortic endothelial cells and retinal fibrovascular membranes from diabetic patients. YAP overexpression impaired endothelium-dependent relaxations (EDRs) in isolated mouse aortas and increased the expression of YAP target genes and inflammatory markers in human umbilical vein endothelial cells (HUVECs). High glucose-activated YAP in HUVECs and aortas was accompanied by increased production of oxygen-reactive species. AMPK inhibition was found to induce YAP activation, resulting in increased JNK activity. Metformin activated AMPK and promoted YAP phosphorylation, ultimately improving EDRs and suppressing the JNK activity. Targeting the AMPK-YAP-JNK axis could become a therapeutic strategy for alleviating vascular dysfunction in obesity and diabetes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: