Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Macrophage-derived exosomes mediate silica-induced pulmonary fibrosis by activating fibroblast in an endoplasmic reticulum stress-dependent manner.

  • Xiaofeng Qin‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Macrophages play a key role in silicosis, and exosomes are potent mediators of intercellular communication. This suggests that macrophage-derived exosomes have a potential contribution to the pathogenesis of silicosis. To investigate whether macrophage-derived exosomes promote or inhibit lung fibrosis, in vitro, silica-exposed macrophage-derived exosomes (SiO2 -Exos) were collected and cocultured with fibroblasts. The expression of collagen I and α-SMA was evaluated. Furthermore, the endoplasmic reticulum (ER) stress markers BIP, XBP1s and P-eIF2α were assessed after treatment with or without the ER stress inhibitor 4-PBA. In vivo, mice were pre-treated with the exosome secretion inhibitor GW4869 prior to silica exposure. After sacrifice, lung tissues were histologically examined, and the expression of proinflammatory cytokines (TNF-α, IL-1β and IL-6) in bronchoalveolar lavage fluid (BALF) was measured. The results showed that the expression of collagen I and α-SMA was up-regulated after treatment with SiO2 -Exos, accompanied by increased expression of BIP, XBP1s and P-eIF2α. Pre-treatment with 4-PBA reversed this effect. More importantly, an in vivo study demonstrated that pre-treatment with GW4869 decreased lung fibrosis and the expression of TNF-α, IL-1β and IL-6 in BALF. These results suggested that SiO2 -Exos are profibrogenic and that the facilitating effect is dependent on ER stress.


CDN1163 alleviates SERCA2 dysfunction-induced pulmonary vascular remodeling by inhibiting the phenotypic transition of pulmonary artery smooth muscle cells.

  • Weimin Yu‎ et al.
  • Clinical and experimental hypertension (New York, N.Y. : 1993)‎
  • 2023‎

Substitution of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes SERCA2 dysfunction which leads to activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway accelerating cell proliferation of pulmonary artery smooth muscle cells (PASMCs) followed by significant pulmonary vascular remodeling resembling human pulmonary hypertension. Based on this knowledge, we intend to investigate other potential mechanisms involved in SERCA2 dysfunction-induced pulmonary vascular remodeling.


The substitution of SERCA2 redox cysteine 674 promotes pulmonary vascular remodeling by activating IRE1α/XBP1s pathway.

  • Weimin Yu‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2022‎

Pulmonary hypertension (PH) is a life-threatening disease characterized by pulmonary vascular remodeling, in which hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role. The cysteine 674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) is the critical redox regulatory cysteine to regulate SERCA2 activity. Heterozygous SERCA2 C674S knock-in mice (SKI), where one copy of C674 was substituted by serine to represent partial C674 oxidative inactivation, developed significant pulmonary vascular remodeling resembling human PH, and their right ventricular systolic pressure modestly increased with age. In PASMCs, substitution of C674 activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway, accelerated cell cycle and cell proliferation, which reversed by IRE1α/XBP1s pathway inhibitor 4μ8C. In addition, suppressing the IRE1α/XBP1s pathway prevented pulmonary vascular remodeling caused by substitution of C674. Similar to SERCA2a, SERCA2b is also important to restrict the proliferation of PASMCs. Our study articulates the causal effect of C674 oxidative inactivation on the development of pulmonary vascular remodeling and PH, emphasizing the importance of C674 in restricting PASMC proliferation to maintain pulmonary vascular homeostasis. Moreover, the IRE1α/XBP1s pathway and SERCA2 might be potential targets for PH therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: