Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Cystatin C Plays a Sex-Dependent Detrimental Role in Experimental Autoimmune Encephalomyelitis.

  • Vahid Hoghooghi‎ et al.
  • Cell reports‎
  • 2020‎

The cysteine protease inhibitor Cystatin C (CST3) is highly expressed in the brains of multiple sclerosis (MS) patients and C57BL/6J mice with experimental autoimmune encephalomyelitis (EAE; a model of MS), but its roles in the diseases are unknown. Here, we show that CST3 plays a detrimental function in myelin oligodendrocyte glycoprotein 35-55 (MOG35-55)-induced EAE but only in female animals. Female Cst3 null mice display significantly lower clinical signs of disease compared to wild-type (WT) littermates. This difference is associated with reduced interleukin-6 production and lower expression of key proteins (CD80, CD86, major histocompatibility complex [MHC] II, LC3A/B) involved in antigen processing, presentation, and co-stimulation in antigen-presenting cells (APCs). In contrast, male WT and Cst3-/- mice and cells show no differences in EAE signs or APC function. Further, the sex-dependent effect of CST3 in EAE is sensitive to gonadal hormones. Altogether, we have shown that CST3 has a sex-dependent role in MOG35-55-induced EAE.


Inhibition of Th1 activation and differentiation by dietary guar gum ameliorates experimental autoimmune encephalomyelitis.

  • Naomi M Fettig‎ et al.
  • Cell reports‎
  • 2022‎

Dietary fibers are potent modulators of immune responses that can restrain inflammation in multiple disease contexts. However, dietary fibers encompass a biochemically diverse family of carbohydrates, and it remains unknown how individual fiber sources influence immunity. In a direct comparison of four different high-fiber diets, we demonstrate a potent ability of guar gum to delay disease and neuroinflammation in experimental autoimmune encephalomyelitis, a T cell-mediated mouse model of multiple sclerosis. Guar gum-specific alterations to the microbiota are limited, and disease protection appears to be independent of fiber-induced increases in short-chain fatty acid levels or regulatory CD4+ T cells. Instead, CD4+ T cells of guar gum-supplemented mice are less encephalitogenic due to reduced activation, proliferation, Th1 differentiation, and altered migratory potential. These findings reveal specificity in the host response to fiber sources and define a pathway of fiber-induced immunomodulation that protects against pathologic neuroinflammation.


Opposing Functions of Microglial and Macrophagic TNFR2 in the Pathogenesis of Experimental Autoimmune Encephalomyelitis.

  • Han Gao‎ et al.
  • Cell reports‎
  • 2017‎

In multiple sclerosis (MS), soluble tumor necrosis factor (TNF) is detrimental via activation of TNF receptor 1 (TNFR1), whereas transmembrane TNF is beneficial primarily by activating TNF receptor 2 (TNFR2). Here, we investigate the role of TNFR2 in microglia and monocytes/macrophages in experimental autoimmune encephalomyelitis (EAE), a model of MS, by cell-specific gene targeting. We show that TNFR2 ablation in microglia leads to early onset of EAE with increased leukocyte infiltration, T cell activation, and demyelination in the central nervous system (CNS). Conversely, TNFR2 ablation in monocytes/macrophages results in EAE suppression with impaired peripheral T cell activation and reduced CNS T cell infiltration and demyelination. Our work uncovers a dichotomy of function for TNFR2 in myeloid cells, with microglial TNFR2 providing protective signals to contain disease and monocyte/macrophagic TNFR2 driving immune activation and EAE initiation. This must be taken into account when targeting TNFR2 for therapeutic purposes in neuroinflammatory diseases.


Repulsive guidance molecule-a is involved in Th17-cell-induced neurodegeneration in autoimmune encephalomyelitis.

  • Shogo Tanabe‎ et al.
  • Cell reports‎
  • 2014‎

Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammation, demyelination, and neurodegeneration in the CNS. Although it is important to prevent neurodegeneration for alleviating neurological disability, the molecular mechanism of neurodegeneration remains largely unknown. Here, we report that repulsive guidance molecule-a (RGMa), known to regulate axonal growth, is associated with neurodegeneration in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. RGMa is highly expressed in interleukin-17-producing CD4(+) T cells (Th17 cells). We induced EAE by adoptive transfer of myelin oligodendrocyte glycoprotein (MOG)-specific Th17 cells and then inhibited RGMa with a neutralizing antibody. Inhibition of RGMa improves EAE scores and reduces neuronal degeneration without altering immune or glial responses. Th17 cells induce cultured cortical neuron death through RGMa-neogenin and Akt dephosphorylation. Our results demonstrate that RGMa is involved in Th17-cell-mediated neurodegeneration and that RGMa-specific antibody may have a therapeutic effect in MS.


Disrupting Myelin-Specific Th17 Cell Gut Homing Confers Protection in an Adoptive Transfer Experimental Autoimmune Encephalomyelitis.

  • Donovan Duc‎ et al.
  • Cell reports‎
  • 2019‎

Multiple sclerosis (MS) is a common autoimmune disease of the CNS. Although an association between MS and inflammatory bowel diseases is observed, the link connecting intestinal immune responses and neuroinflammation remains unclear. Here we show that encephalitogenic Th17 cells infiltrate the colonic lamina propria before neurological symptom development in two murine MS models, active and adoptive transfer experimental autoimmune encephalomyelitis (EAE). Specifically targeting Th17 cell intestinal homing by blocking the α4β7-integrin and its ligand MAdCAM-1 pathway impairs T cell migration to the large intestine and dampens EAE severity in the Th17 cell adoptive transfer model. Mechanistically, myelin-specific Th17 cells proliferate in the colon and affect gut microbiota composition. The beneficial effect of blocking the α4β7-integrin and its ligand MAdCAM-1 pathway on EAE is interdependent with gut microbiota. Those results show that disrupting myelin-specific Th17 cell trafficking to the large intestine harnesses neuroinflammation and suggests that the gut environment and microbiota catalyze the encephalitogenic properties of Th17 cells.


The gut microbiota-induced kynurenic acid recruits GPR35-positive macrophages to promote experimental encephalitis.

  • Kentaro Miyamoto‎ et al.
  • Cell reports‎
  • 2023‎

The intricate interplay between gut microbes and the onset of experimental autoimmune encephalomyelitis (EAE) remains poorly understood. Here, we uncover remarkable similarities between CD4+ T cells in the spinal cord and their counterparts in the small intestine. Furthermore, we unveil a synergistic relationship between the microbiota, particularly enriched with the tryptophan metabolism gene EC:1.13.11.11, and intestinal cells. This symbiotic collaboration results in the biosynthesis of kynurenic acid (KYNA), which modulates the recruitment and aggregation of GPR35-positive macrophages. Subsequently, a robust T helper 17 (Th17) immune response is activated, ultimately triggering the onset of EAE. Conversely, modulating the KYNA-mediated GPR35 signaling in Cx3cr1+ macrophages leads to a remarkable amelioration of EAE. These findings shed light on the crucial role of microbial-derived tryptophan metabolites in regulating immune responses within extraintestinal tissues.


Focal MMP-2 and MMP-9 activity at the blood-brain barrier promotes chemokine-induced leukocyte migration.

  • Jian Song‎ et al.
  • Cell reports‎
  • 2015‎

Although chemokines are sufficient for chemotaxis of various cells, increasing evidence exists for their fine-tuning by selective proteolytic processing. Using a model of immune cell chemotaxis into the CNS (experimental autoimmune encephalomyelitis [EAE]) that permits precise localization of immigrating leukocytes at the blood-brain barrier, we show that, whereas chemokines are required for leukocyte migration into the CNS, additional MMP-2/9 activities specifically at the border of the CNS parenchyma strongly enhance this transmigration process. Cytokines derived from infiltrating leukocytes regulate MMP-2/9 activity at the parenchymal border, which in turn promotes astrocyte secretion of chemokines and differentially modulates the activity of different chemokines at the CNS border, thereby promoting leukocyte migration out of the cuff. Hence, cytokines, chemokines, and cytokine-induced MMP-2/9 activity specifically at the inflammatory border collectively act to accelerate leukocyte chemotaxis across the parenchymal border.


Vitamin B5 rewires Th17 cell metabolism via impeding PKM2 nuclear translocation.

  • Chen Chen‎ et al.
  • Cell reports‎
  • 2022‎

Metabolic rewiring is essential for Th17 cells' functional identity to sense and interpret environmental cues. However, the environmental metabolic checkpoints with specific regulation of Th17 cells, manifesting potential therapeutic opportunities to autoimmune diseases, remain largely unknown. Here, by screening more than one hundred compounds derived from intestinal microbes or diet, we found that vitamin B5 (VB5) restrains Th17 cell differentiation as well as related autoimmune diseases such as experimental autoimmune encephalomyelitis and colitis. Mechanistically, VB5 is catabolized into coenzyme A (CoA) in a pantothenate kinase (PANK)-dependent manner, and in turn, CoA binds to pyruvate kinase isoform 2 (PKM2) to impede its phosphorylation and nuclear translocation, thus inhibiting glycolysis and STAT3 phosphorylation. In humans, reduced serum VB5 levels are found in both IBD and MS patients. Collectively, our study demonstrates a role of VB5 in Th17 cell metabolic reprograming, thus providing a potential therapeutic intervention for Th17 cell-associated autoimmune diseases.


TRIM11 attenuates Treg cell differentiation by p62-selective autophagic degradation of AIM2.

  • Ting Yu‎ et al.
  • Cell reports‎
  • 2023‎

Ubiquitination is an important protein modification that regulates diverse biological processes, including CD4+ T cell differentiation and functions. However, the function of most E3 ubiquitin ligases in CD4+ T cell differentiation and CD4+ T cell-mediated pathological diseases remains unclear. In this study, we find that tripartite motif-containing motif 11 (TRIM11) specifically negatively regulates regulatory T (Treg) cell differentiation in CD4+ T cells and promotes autoimmune disease development in an AIM2-dependent manner. Mechanistically, TRIM11 interacts with absent in melanoma 2 (AIM2) and promotes the selective autophagic degradation of AIM2 by inducing AIM2 ubiquitination and binding to p62 in CD4+ T cells. AIM2 attenuates AKT and FOXO1 phosphorylation, MYC signaling, and glycolysis, thereby promoting the stability of Treg cells during experimental autoimmune encephalomyelitis (EAE). Our findings suggest that TRIM11 serves as a potential target for immunotherapeutic intervention for dysregulated immune responses that lead to autoimmunity and cancers.


EBI2 Expression and Function: Robust in Memory Lymphocytes and Increased by Natalizumab in Multiple Sclerosis.

  • Aurélie S Clottu‎ et al.
  • Cell reports‎
  • 2017‎

The interaction between oxysterols and the G protein-coupled receptor Epstein-Barr virus-induced gene 2 (EBI2) fine-tunes immune cell migration, a mechanism efficiently targeted by several disease-modifying treatments developed to treat multiple sclerosis (MS), such as natalizumab. We previously showed that memory CD4+ T lymphocytes migrate specifically in response to 7α,25-dihydroxycholesterol (7α,25-OHC) via EBI2 in the MS murine model experimental autoimmune encephalomyelitis. However, the EBI2 expression profile in human lymphocytes in both healthy and MS donors is unknown. Here, we characterize EBI2 biology in human lymphocytes. We observed that EBI2 is functionally expressed on memory CD4+ T cells and is enhanced under natalizumab treatment. These data suggest a significant role for EBI2 in human CD4+ T cell migration, notably in patients with MS. Better knowledge of EBI2 involvement in autoimmunity may therefore lead to an improved understanding of the physiopathology of MS.


ATF4 Regulates CD4+ T Cell Immune Responses through Metabolic Reprogramming.

  • Xi Yang‎ et al.
  • Cell reports‎
  • 2018‎

T cells are strongly regulated by oxidizing environments and amino acid restriction. How T cells reprogram metabolism to adapt to these extracellular stress situations is not well understood. Here, we show that oxidizing environments and amino acid starvation induce ATF4 in CD4+ T cells. We also demonstrate that Atf4-deficient CD4+ T cells have defects in redox homeostasis, proliferation, differentiation, and cytokine production. We further reveal that ATF4 regulates a coordinated gene network that drives amino acid intake, mTORC1 activation, protein translation, and an anabolic program for de novo synthesis of amino acids and glutathione. ATF4 also promotes catabolic glycolysis and glutaminolysis and oxidative phosphorylation and thereby provides precursors and energy for anabolic pathways. ATF4-deficient mice mount reduced Th1 but elevated Th17 immune responses and develop more severe experimental allergic encephalomyelitis (EAE). Our study demonstrates that ATF4 is critical for CD4+ T cell-mediated immune responses through driving metabolic adaptation.


Autophagy Is a Tolerance-Avoidance Mechanism that Modulates TCR-Mediated Signaling and Cell Metabolism to Prevent Induction of T Cell Anergy.

  • Enric Mocholi‎ et al.
  • Cell reports‎
  • 2018‎

In response to activation, CD4+ T cells upregulate autophagy. However, the functional consequences of that upregulation have not been fully elucidated. In this study, we identify autophagy as a tolerance-avoidance mechanism. Our data show that inhibition of autophagy during CD4+ T cell activation induces a long-lasting state of hypo-responsiveness that is accompanied by the expression of an anergic gene signature. Cells unable to induce autophagy after T cell receptor (TCR) engagement show inefficient mitochondrial respiration and decreased turnover of the protein tyrosine phosphatase PTPN1, which translates into defective TCR-mediated signaling. In vivo, inhibition of autophagy during antigen priming induces T cell anergy and decreases the severity of disease in an experimental autoimmune encephalomyelitis mouse model. Interestingly, CD4+ T cells isolated from the synovial fluid of juvenile idiopathic arthritis patients, while resistant to suboptimal stimulation-induced anergy, can be tolerized with autophagy inhibitors. We propose that autophagy constitutes a tolerance-avoidance mechanism, which determines CD4+ T cell fate.


Nemo-like Kinase Drives Foxp3 Stability and Is Critical for Maintenance of Immune Tolerance by Regulatory T Cells.

  • Veerle Fleskens‎ et al.
  • Cell reports‎
  • 2019‎

The Foxp3 transcription factor is a crucial determinant of both regulatory T (TREG) cell development and their functional maintenance. Appropriate modulation of tolerogenic immune responses therefore requires the tight regulation of Foxp3 transcriptional output, and this involves both transcriptional and post-translational regulation. Here, we show that during T cell activation, phosphorylation of Foxp3 in TREG cells can be regulated by a TGF-β activated kinase 1 (TAK1)-Nemo-like kinase (NLK) signaling pathway. NLK interacts and phosphorylates Foxp3 in TREG cells, resulting in the stabilization of protein levels by preventing association with the STUB1 E3-ubiquitin protein ligase. Conditional TREG cell NLK-knockout (NLKΔTREG) results in decreased TREG cell-mediated immunosuppression in vivo, and NLK-deficient TREG cell animals develop more severe experimental autoimmune encephalomyelitis. Our data suggest a molecular mechanism, in which stimulation of TCR-mediated signaling can induce a TAK1-NLK pathway to sustain Foxp3 transcriptional activity through the stabilization of protein levels, thereby maintaining TREG cell suppressive function.


Caveolin1 Is Required for Th1 Cell Infiltration, but Not Tight Junction Remodeling, at the Blood-Brain Barrier in Autoimmune Neuroinflammation.

  • Sarah E Lutz‎ et al.
  • Cell reports‎
  • 2017‎

Lymphocytes cross vascular boundaries via either disrupted tight junctions (TJs) or caveolae to induce tissue inflammation. In the CNS, Th17 lymphocytes cross the blood-brain barrier (BBB) before Th1 cells; yet this differential crossing is poorly understood. We have used intravital two-photon imaging of the spinal cord in wild-type and caveolae-deficient mice with fluorescently labeled endothelial tight junctions to determine how tight junction remodeling and caveolae regulate CNS entry of lymphocytes during the experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis. We find that dynamic tight junction remodeling occurs early in EAE but does not depend upon caveolar transport. Moreover, Th1, but not Th17, lymphocytes are significantly reduced in the inflamed CNS of mice lacking caveolae. Therefore, tight junction remodeling facilitates Th17 migration across the BBB, whereas caveolae promote Th1 entry into the CNS. Moreover, therapies that target both tight junction degradation and caveolar transcytosis may limit lymphocyte infiltration during inflammation.


CD4+ T-cell-derived IL-10 promotes CNS inflammation in mice by sustaining effector T cell survival.

  • Nir Yogev‎ et al.
  • Cell reports‎
  • 2022‎

Interleukin (IL)-10 is considered a prototypical anti-inflammatory cytokine, significantly contributing to the maintenance and reestablishment of immune homeostasis. Accordingly, it has been shown in the intestine that IL-10 produced by Tregs can act on effector T cells, thereby limiting inflammation. Herein, we investigate whether this role also applies to IL-10 produced by T cells during central nervous system (CNS) inflammation. During neuroinflammation, both CNS-resident and -infiltrating cells produce IL-10; yet, as IL-10 has a pleotropic function, the exact contribution of the different cellular sources is not fully understood. We find that T-cell-derived IL-10, but not other relevant IL-10 sources, can promote inflammation in experimental autoimmune encephalomyelitis. Furthermore, in the CNS, T-cell-derived IL-10 acts on effector T cells, promoting their survival and thereby enhancing inflammation and CNS autoimmunity. Our data indicate a pro-inflammatory role of T-cell-derived IL-10 in the CNS.


IL-2 can signal via chemokine receptors to promote regulatory T cells' suppressive function.

  • Hao Sun‎ et al.
  • Cell reports‎
  • 2023‎

Canonical interleukin-2 (IL-2) signaling via the high-affinity CD25-containing IL-2 receptor-Janus kinase (JAK)1,3-signal transducer and activator of transcription 5 (STAT5) pathway is essential for development and maintenance of CD4+CD25HiFoxp3+ regulatory T cells (Tregs) that support immune homeostasis. Here, we report that IL-2 signaling via an alternative CD25-chemokine receptor pathway promotes the suppressive function of Tregs. Using an antibody against CD25 that biases IL-2 signaling toward this alternative pathway, we establish that this pathway increases the suppressive activity of Tregs and ameliorates murine experimental autoimmune encephalomyelitis (EAE). Furthermore, heparan sulfate, an IL-2-binding element of cell surfaces and extracellular matrix, or an engineered IL-2 immunocytokine can also direct IL-2 signaling toward this alternative pathway. Overall, these data reveal a non-canonical mechanism for IL-2 signaling that promotes suppressive functions of Tregs, further elucidates how IL-2 supports immune homeostasis, and suggests approaches to promote or suppress Treg functions.


Interleukin-17 affects synaptic plasticity and cognition in an experimental model of multiple sclerosis.

  • Massimiliano Di Filippo‎ et al.
  • Cell reports‎
  • 2021‎

Cognitive impairment (CI) is a disabling concomitant of multiple sclerosis (MS) with a complex and controversial pathogenesis. The cytokine interleukin-17A (IL-17A) is involved in the immune pathogenesis of MS, but its possible effects on synaptic function and cognition are still largely unexplored. In this study, we show that the IL-17A receptor (IL-17RA) is highly expressed by hippocampal neurons in the CA1 area and that exposure to IL-17A dose-dependently disrupts hippocampal long-term potentiation (LTP) through the activation of its receptor and p38 mitogen-activated protein kinase (MAPK). During experimental autoimmune encephalomyelitis (EAE), IL-17A overexpression is paralleled by hippocampal LTP dysfunction. An in vivo behavioral analysis shows that visuo-spatial learning abilities are preserved when EAE is induced in mice lacking IL-17A. Overall, this study suggests a key role for the IL-17 axis in the neuro-immune cross-talk occurring in the hippocampal CA1 area and its potential involvement in synaptic dysfunction and MS-related CI.


Toll-like receptor 2 induces pathogenicity in Th17 cells and reveals a role for IPCEF in regulating Th17 cell migration.

  • Kathryne E Marks‎ et al.
  • Cell reports‎
  • 2021‎

Pathogenic Th17 cells drive inflammation in autoimmune disease, yet the molecular programming underlying Th17 cell pathogenicity remains insufficiently understood. Activation of Toll-like receptor 2 (TLR2) increases Th17 cell inflammatory potential, but little is known regarding the mechanistic outcomes of TLR2 signaling in Th17 cells. Here, we demonstrate that TLR2 is comparable to IL-23 in inducing pathogenicity and increasing the migratory capacity of Th17 cells. We perform RNA sequencing of Th17 cells stimulated though the TLR2 pathway and find differential expression of several genes linked with the Th17 genetic program as well as genes not previously associated with pathogenic Th17 cells, including Ipcef1. Enforced expression of Ipcef1 in Th17 cells abolishes the TLR2-dependent increases in migratory capacity and severely impairs the ability of Th17 cells to induce experimental autoimmune encephalomyelitis. This study establishes the importance of the TLR2 signaling pathway in inducing Th17 cell pathogenicity and driving autoimmune inflammation.


The Sympathetic Nervous System Mitigates CNS Autoimmunity via β2-Adrenergic Receptor Signaling in Immune Cells.

  • Leandro Pires Araujo‎ et al.
  • Cell reports‎
  • 2019‎

Noradrenaline (NE), the main neurotransmitter released by sympathetic nerve terminals, is known to modulate the immune response. However, the role of the sympathetic nervous system (SNS) on the development of autoimmune diseases is still unclear. Here, we report that the SNS limits the generation of pathogenic T cells and disease development in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). β2-Adrenergic receptor (Adrb2) signaling limits T cell autoimmunity in EAE through a mechanism mediated by the suppression of IL-2, IFN-γ, and GM-CSF production via inducible cAMP early repressor (ICER). Accordingly, the lack of Adrb2 signaling in immune cells is sufficient to abrogate the suppressive effects of SNS activity, resulting in increased pathogenic T cell responses and EAE development. Collectively, these results uncover a suppressive role for the SNS in CNS autoimmunity while they identify potential targets for therapeutic intervention.


Inflammatory Th17 Cells Express Integrin αvβ3 for Pathogenic Function.

  • Fang Du‎ et al.
  • Cell reports‎
  • 2016‎

Interleukin-23 (IL-23) is required for inflammatory Th17 cell function in experimental autoimmune encephalomyelitis (EAE), and IL-23 blockade reduces the number of effector Th17 cells in the CNS. We report that pro-inflammatory Th17 cells express high integrin β3 that is IL-23 dependent. Integrin β3 was not upregulated on all activated T cells; rather, integrin β3 was upregulated along with its functional partner integrin αv on effector Th17 cells and "ex-Th17" cells, and αvβ3(hi) RORγt(+) cells expanded during EAE. Integrin αvβ3 inhibitors ameliorated clinical signs of EAE, and integrin β3 deficiency on CD4(+) T cells alone was sufficient to block EAE induction. Furthermore, integrin-β3-deficient Th17 cells, but not Th1 cells, were impaired in their ability to induce EAE. Integrin β3(-/-) T cells induced smaller demyelinated lesions and showed reduced spread and accumulation within the CNS, corresponding with impaired extracellular-matrix-mediated migration. Hence, integrin β3 is required for Th17 cell-mediated autoimmune CNS inflammation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: