Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Profiling ethanol-targeted transcription factors in human carcinoma cell-derived embryoid bodies.

  • Chanchal Mandal‎ et al.
  • Gene‎
  • 2016‎

Fetal alcohol spectrum disorder is a collective term that represents fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not yet understood. Few insights have been gained from genetic and epigenetic studies of fetal alcohol spectrum disorder. Our aim was to profile the important molecular regulators of ethanol-related alterations of the genome. For this purpose, we have analyzed the gene expression pattern of human carcinoma cell-derived embryoid bodies in the absence or presence of ethanol. A cDNA microarray analysis was used to profile mRNA expression in embryoid bodies at day 7 with or without ethanol treatment. A total of 493 differentially expressed genes were identified in response to 50 mM ethanol exposure. Of these, 111 genes were up-regulated, and 382 were down-regulated. Gene ontology term enrichment analysis revealed that these genes are involved in important biological processes: neurological system processes, cognition, behavior, sensory perception of smell, taste and chemical stimuli and synaptic transmission. Similarly, the enrichment of disease-related genes included relevant categories such as neurological diseases, developmental disorders, skeletal and muscular disorders, and connective tissue disorders. Furthermore, we have identified a group of 26 genes that encode transcription factors. We validated the relative gene expression of several transcription factors using quantitative real time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanisms underlying the pathology of alcohol-mediated anomalies and facilitates further research.


Epigenetic modification cooperates with Zeb1 transcription factor to regulate Bmp4 to promote chicken PGCs formation.

  • Shujian Zhou‎ et al.
  • Gene‎
  • 2021‎

BMP4 is the critical gene of primordial germ cell formation in mammal, however, the mechanism of PGCs formation in chicken still unknown. In this research, we compared the evolution relationship of different species. Although the protein sequence is highly conservative between mouse, human and chicken, promotors vary among avian and mammal species. Therefore, it is easily to predict that there would be different regulation mechanism of Bmp4 expression in chicken. Here, we elucidate the function of chicken Bmp4 during PGCs formation. In vivo, Bmp4 can promote PGCs development and migration, and increase the expression of key genes (Cvh, c-kit, cxcr4, etc.). Whereas, the expression of these genes will decrease after knocking out Bmp4. After over-expression and knockout Bmp4 in vitro, we found that overexpression of Bmp4 could promote the formation of embryoid bodies (EB) and up-regulate the key genes of PGCs formation and migration, while knockout Bmp4 could inhibit the formation of embryoid bodies and decrease the expression of related genes. Flow and indirect immunofluorescence also indicated the same result. These all results proved that chicken Bmp4 could also promote the formation of PGCs. Furthermore, dual-luciferase activity detection showed that the promotor activity of Bmp4 was positively regulated by transcription factor Zeb1. Overexpression of Zeb1 can also increase the mRNA and protein expression of Bmp4. At the same time, DNA methylation inhibited Bmp4 transcription and histone methylation was able to promote its transcription. In conclusion, this study established that chicken Bmp4 can promote the formation of chicken PGCs. This gene is regulated by DNA, histone methylation and transcription factor Zeb1. These results lay a theoretical foundation for exploring the function and molecular mechanism of Bmp4 in the process of PGCs formation.


Onset of rosette formation during spontaneous neural differentiation of hESC and hiPSC colonies.

  • Sergey Malchenko‎ et al.
  • Gene‎
  • 2014‎

In vitro neural differentiation of human embryonic stem cells (hESCs) is an advantageous system for studying early neural development. The process of early neural differentiation in hESCs begins by initiation of primitive neuroectoderm, which is manifested by rosette formation, with consecutive differentiation into neural progenitors and early glial-like cells. In this study, we examined the involvement of early neural markers - OTX2, PAX6, Sox1, Nestin, NR2F1, NR2F2, and IRX2 - in the onset of rosette formation, during spontaneous neural differentiation of hESC and human induced pluripotent stem cell (hiPSC) colonies. This is in contrast to the conventional way of studying rosette formation, which involves induction of neuronal differentiation and the utilization of embryoid bodies. Here we show that OTX2 is highly expressed at the onset of rosette formation, when rosettes comprise no more than 3-5 cells, and that its expression precedes that of established markers of early neuronal differentiation. Importantly, the rise of OTX2 expression in these cells coincides with the down-regulation of the pluripotency marker OCT4. Lastly, we show that cells derived from rosettes that emerge during spontaneous differentiation of hESCs or hiPSCs are capable of differentiating into dopaminergic neurons in vitro, and into mature-appearing pyramidal and serotonergic neurons weeks after being injected into the motor cortex of NOD-SCID mice.


Aza-induced cardiomyocyte differentiation of P19 EC-cells by epigenetic co-regulation and ERK signaling.

  • Deepti Abbey‎ et al.
  • Gene‎
  • 2013‎

Stem cells in cell based therapy for cardiac injury is being potentially considered. However, genetic regulatory networks involved in cardiac differentiation are not clearly understood. Among stem cell differentiation models, mouse P19 embryonic carcinoma (EC) cells, are employed for studying (epi)genetic regulation of cardiomyocyte differentiation. Here, we comprehensively assessed cardiogenic differentiation potential of 5-azacytidine (Aza) on P19 EC-cells, associated gene expression profiles and the changes in DNA methylation, histone acetylation and activated-ERK signaling status during differentiation. Initial exposure of Aza to cultured EC-cells leads to an efficient (55%) differentiation to cardiomyocyte-rich embryoid bodies with a threefold (16.8%) increase in the cTnI+ cardiomyocytes. Expression levels of cardiac-specific gene markers i.e., Isl-1, BMP-2, GATA-4, and α-MHC were up-regulated following Aza induction, accompanied by differential changes in their methylation status particularly that of BMP-2 and α-MHC. Additionally, increases in the levels of acetylated-H3 and pERK were observed during Aza-induced cardiac differentiation. These studies demonstrate that Aza is a potent cardiac inducer when treated during the initial phase of differentiation of mouse P19 EC-cells and its effect is brought about epigenetically and co-ordinatedly by hypo-methylation and histone acetylation-mediated hyper-expression of cardiogenesis-associated genes and involving activation of ERK signaling.


Analysis of transcript levels of a few schizophrenia candidate genes in neurons from a transgenic mouse embryonic stem cell model overexpressing DNMT1.

  • Sonal Saxena‎ et al.
  • Gene‎
  • 2020‎

Overexpression of DNA Methyltransferase I (DNMT1) is considered as one of the etiological factors for schizophrenia (SZ). However, information on genes subjected to dysregulation because of DNMT1 overexpression is limited. To test whether a larger group of SZ-associated genes are affected, we selected 15 genes reported to be dysregulated in patients (Gad1, Reln, Ank3, Cacna1c, Dkk3, As3mt, Ppp1r11, Smad5, Syn1, Wnt1, Pdgfra, Gsk3b, Cxcl12, Tcf4 and Fez1). Transcript levels of these genes were compared between neurons derived from Dnmt1tet/tet (Tet/Tet) mouse embryonic stem cells (ESCs) that overexpress DNMT1 with R1 (wild-type) neurons. Transcript levels of thirteen genes were significantly altered in Tet/Tet neurons of which, the dysregulation patterns of 11 were similar to patients. Transcript levels of eight out of these eleven were also significantly altered in Tet/Tet ESCs, but the dysregulation patterns of only five were similar to neurons. Comparative analyses among ESCs, embryoid bodies and neurons divided the 15 genes into four distinct groups with a majority showing developmental stage-specific patterns of dysregulation. Reduced Representational Bisulfite Sequencing data from neurons did not show any altered promoter DNA methylation for the dysregulated genes. Doxycycline treatment of Tet/Tet ESCs that eliminated DNMT1, reversed the direction of dysregulation of only four genes (Gad1, Dkk3, As3mt and Syn1). These results suggest that 1. Increased DNMT1 affected the levels of a majority of the transcripts studied, 2. Dysregulation appears to be independent of promoter methylation, 3. Effects of increased DNMT1 levels were reversible for only a subset of the genes studied, and 4. Increased DNMT1 levels may affect transcript levels of multiple schizophrenia-associated genes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: