2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline on the protective action of various antiepileptic drugs in the maximal electroshock-induced seizure model: a type II isobolographic analysis.

  • Marta Andres-Mach‎ et al.
  • Journal of neural transmission (Vienna, Austria : 1996)‎
  • 2013‎

The aim of this study was to characterize the interaction between 1-methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTHIQ-an endogenous parkinsonism-preventing substance) and various antiepileptic drugs [AEDs: clonazepam (CZP), ethosuximide (ETS), gabapentin (GBP), levetiracetam (LEV), tiagabine (TGB) and vigabatrin (VGB)] in the mouse maximal electroshock (MES)-induced seizure model. Results indicate that 1-MeTHIQ in combination with CZP (at the fixed ratios of 50:1 and 25:1), ETS (1:10) and GBP (1:1, 1:2, 1:5 and 1:10) exerted supra-additive (synergistic) interactions in the mouse MES model. In contrast, 1-MeTHIQ in combination with CZP (200:1 and 100:1), ETS (1:1, 1:2 and 1:5), LEV and VGB (1:1, 1:2, 1:5 and 1:10), and TGB (200:1, 100:1, 50:1 and 25:1) produced additive interaction in the mouse MES model. Total brain AED concentrations were unaffected by 1-MeTHIQ, and inversely, CZP, ETS and GBP had no impact on total brain concentrations of 1-MeTHIQ, indicating pharmacodynamic nature of synergistic interactions between 1-MeTHIQ and the tested AEDs in the mouse MES model. In conclusion, the supra-additive interactions of 1-MeTHIQ with CZP (at the fixed ratios of 50:1 and 25:1), ETS (1:10) and GBP (1:1, 1:2, 1:5 and 1:10) in the mouse MES model appear to be particularly favorable combinations from a clinical viewpoint. The additive combinations of 1-MeTHIQ with CZP (100:1, 50:1), ETS (1:1, 1:2 and 1:5), LEV and VGB (1:1, 1:2, 1:5, and 1:10), and TGB (200:1, 100:1, 50:1 and 25:1) seem to be neutral and worthy of consideration in further clinical practice.


Clavulanic acid does not affect convulsions in acute seizure tests in mice.

  • Maciej Gasior‎ et al.
  • Journal of neural transmission (Vienna, Austria : 1996)‎
  • 2012‎

Clavulanic acid (CLAV) inhibits bacterial β-lactamases and is commonly used to aid antibiotic therapy. Prompted by the initial evidence suggestive of the potential anticonvulsant and neuroprotective properties of CLAV, the present study was undertaken to systematically evaluate its acute effects on seizure thresholds in seizure tests typically used in primary screening of potential antiepileptic drugs (AEDs). In the present study, 6-Hz seizure threshold, maximal electroshock seizure threshold (MEST) test, and intravenous pentylenetetrazole (i.v. PTZ) seizure tests were used to determine anticonvulsant effects of intraperitoneally (i.p.) administered CLAV in mice. Acute effects on motor coordination and muscle strength were assessed in the chimney and grip-strength tests, respectively. Doses of CLAV studied in the present study were either comparable or extended the doses reported in the literature to be effective against kainic acid-induced convulsions in mice or behaviorally active in rodents and monkeys. CLAV had no effect on seizure thresholds in the 6-Hz (64 ng/kg to 1 mg/kg) and MEST (64 ng/kg to 5 mg/kg) seizure tests. Similarly, CLAV had no effect on seizure thresholds for i.v. PTZ-induced myoclonic twitch, clonic convulsions, and tonic convulsions (64 ng/kg to 5 mg/kg). Finally, CLAV (64 ng/kg to 5 mg/kg) had no effect on the motor performance and muscle strength in the chimney and grip-strength tests, respectively. In summary, CLAV failed to affect seizure thresholds in three seizure tests in mice. Although the results of the present study do not support further development of CLAV as an AED, its beneficial effects in chronic epilepsy models warrant further evaluation owing to its, for example, potential neuroprotective properties.


α-Spinasterol, a TRPV1 receptor antagonist, elevates the seizure threshold in three acute seizure tests in mice.

  • Katarzyna Socała‎ et al.
  • Journal of neural transmission (Vienna, Austria : 1996)‎
  • 2015‎

α-Spinasterol is a plant-derived compound which was reported to act as a selective antagonist for the transient receptor potential vanilloid 1 (TRPV1) receptor. Several studies revealed that the TRPV1 receptors might modulate seizure activity in animal models of seizures and epilepsy. The aim of the present study was to investigate the effect of α-spinasterol on the seizure threshold in three acute models of seizures, i.e., in the intravenous (i.v.) pentylenetetrazole (PTZ) seizure test, in the maximal electroshock seizure threshold (MEST) test and in the model of psychomotor seizures induced by 6 Hz stimulation in mice. Our results revealed significant anticonvulsant effect of α-spinasterol in all the used seizure tests. In the i.v. PTZ test, statistically significant elevation was noted in case of the threshold for myoclonic twitches (doses of 0.1-1 mg/kg) and generalized clonus seizures (doses of 0.5 and 1 mg/kg) but not for tonic seizures. The studied TRPV1 antagonist also increased the threshold for tonic hindlimb extension in the MEST (doses of 0.5 and 1 mg/kg) and 6 Hz psychomotor seizure (doses of 0.1 and 0.5 mg/kg) tests in mice. Furthermore, α-spinasterol did not produce any significant impairment of motor coordination (assessed in the chimney test) and muscular strength (investigated in the grip-strength test) and it did not provoke significant changes in body temperature in mice. Based on the results of our study and the fact that α-spinasterol is characterized by good blood-brain permeability, we postulate further investigation of this compound to precisely evaluate mechanism of its anticonvulsant action and opportunity of its usage in clinical practice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: