Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 651 papers

Discovering disease-disease associations using electronic health records in The Guideline Advantage (TGA) dataset.

  • Aixia Guo‎ et al.
  • Scientific reports‎
  • 2021‎

Certain diseases have strong comorbidity and co-occurrence with others. Understanding disease-disease associations can potentially increase awareness among healthcare providers of co-occurring conditions and facilitate earlier diagnosis, prevention and treatment of patients. In this study, we utilized the valuable and large The Guideline Advantage (TGA) longitudinal electronic health record dataset from 70 outpatient clinics across the United States to investigate potential disease-disease associations. Specifically, the most prevalent 50 disease diagnoses were manually identified from 165,732 unique patients. To investigate the co-occurrence or dependency associations among the 50 diseases, the categorical disease terms were first mapped into numerical vectors based on disease co-occurrence frequency in individual patients using the Word2Vec approach. Then the novel and interesting disease association clusters were identified using correlation and clustering analyses in the numerical space. Moreover, the distribution of time delay (Δt) between pair-wise strongly associated diseases (correlation coefficients ≥ 0.5) were calculated to show the dependency among the diseases. The results can indicate the risk of disease comorbidity and complications, and facilitate disease prevention and optimal treatment decision-making.


Analysis of free text in electronic health records for identification of cancer patient trajectories.

  • Kasper Jensen‎ et al.
  • Scientific reports‎
  • 2017‎

With an aging patient population and increasing complexity in patient disease trajectories, physicians are often met with complex patient histories from which clinical decisions must be made. Due to the increasing rate of adverse events and hospitals facing financial penalties for readmission, there has never been a greater need to enforce evidence-led medical decision-making using available health care data. In the present work, we studied a cohort of 7,741 patients, of whom 4,080 were diagnosed with cancer, surgically treated at a University Hospital in the years 2004-2012. We have developed a methodology that allows disease trajectories of the cancer patients to be estimated from free text in electronic health records (EHRs). By using these disease trajectories, we predict 80% of patient events ahead in time. By control of confounders from 8326 quantified events, we identified 557 events that constitute high subsequent risks (risk > 20%), including six events for cancer and seven events for metastasis. We believe that the presented methodology and findings could be used to improve clinical decision support and personalize trajectories, thereby decreasing adverse events and optimizing cancer treatment.


Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records.

  • Daniel M Bean‎ et al.
  • Scientific reports‎
  • 2017‎

Unknown adverse reactions to drugs available on the market present a significant health risk and limit accurate judgement of the cost/benefit trade-off for medications. Machine learning has the potential to predict unknown adverse reactions from current knowledge. We constructed a knowledge graph containing four types of node: drugs, protein targets, indications and adverse reactions. Using this graph, we developed a machine learning algorithm based on a simple enrichment test and first demonstrated this method performs extremely well at classifying known causes of adverse reactions (AUC 0.92). A cross validation scheme in which 10% of drug-adverse reaction edges were systematically deleted per fold showed that the method correctly predicts 68% of the deleted edges on average. Next, a subset of adverse reactions that could be reliably detected in anonymised electronic health records from South London and Maudsley NHS Foundation Trust were used to validate predictions from the model that are not currently known in public databases. High-confidence predictions were validated in electronic records significantly more frequently than random models, and outperformed standard methods (logistic regression, decision trees and support vector machines). This approach has the potential to improve patient safety by predicting adverse reactions that were not observed during randomised trials.


Explainable machine learning aggregates polygenic risk scores and electronic health records for Alzheimer's disease prediction.

  • Xiaoyi Raymond Gao‎ et al.
  • Scientific reports‎
  • 2023‎

Alzheimer's disease (AD) is the most common late-onset neurodegenerative disorder. Identifying individuals at increased risk of developing AD is important for early intervention. Using data from the Alzheimer Disease Genetics Consortium, we constructed polygenic risk scores (PRSs) for AD and age-at-onset (AAO) of AD for the UK Biobank participants. We then built machine learning (ML) models for predicting development of AD, and explored feature importance among PRSs, conventional risk factors, and ICD-10 codes from electronic health records, a total of > 11,000 features using the UK Biobank dataset. We used eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanations (SHAP), which provided superior ML performance as well as aided ML model explanation. For participants age 40 and older, the area under the curve for AD was 0.88. For subjects of age 65 and older (late-onset AD), PRSs were the most important predictors. This is the first observation that PRSs constructed from the AD risk and AAO play more important roles than age in predicting AD. The ML model also identified important predictors from EHR, including urinary tract infection, syncope and collapse, chest pain, disorientation and hypercholesterolemia, for developing AD. Our ML model improved the accuracy of AD risk prediction by efficiently exploring numerous predictors and identified novel feature patterns.


Statin use and the risk of colorectal cancer in a population-based electronic health records study.

  • Gemma Ibáñez-Sanz‎ et al.
  • Scientific reports‎
  • 2019‎

There is extensive debate regarding the protective effect of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) on colorectal cancer (CRC). We aimed to assess the association between CRC risk and exposure to statins using a large cohort with prescription data. We carried out a case-control study in Catalonia using the System for Development of Primary Care Research (SIDIAP) database that recorded patient diseases history and linked data on reimbursed medication. The study included 25 811 cases with an incident diagnosis of CRC between 2010 and 2015 and 129 117 frequency-matched controls. Subjects were classified as exposed to statins if they had ever been dispensed statins. Analysis considering mean daily defined dose, cumulative duration and type of statin were performed. Overall, 66 372 subjects (43%) were exposed to statins. There was no significant decrease of CRC risk associated to any statin exposure (OR = 0.98; 95% CI: 0.95-1.01). Only in the stratified analysis by location a reduction of risk for rectal cancer was observed associated to statin exposure (OR = 0.87; 95% CI: 0.81-0.92). This study does not support an overall protective effect of statins in CRC, but a protective association with rectal cancer merits further research.


Heart disease risk factors detection from electronic health records using advanced NLP and deep learning techniques.

  • Essam H Houssein‎ et al.
  • Scientific reports‎
  • 2023‎

Heart disease remains the major cause of death, despite recent improvements in prediction and prevention. Risk factor identification is the main step in diagnosing and preventing heart disease. Automatically detecting risk factors for heart disease in clinical notes can help with disease progression modeling and clinical decision-making. Many studies have attempted to detect risk factors for heart disease, but none have identified all risk factors. These studies have proposed hybrid systems that combine knowledge-driven and data-driven techniques, based on dictionaries, rules, and machine learning methods that require significant human effort. The National Center for Informatics for Integrating Biology and Beyond (i2b2) proposed a clinical natural language processing (NLP) challenge in 2014, with a track (track2) focused on detecting risk factors for heart disease risk factors in clinical notes over time. Clinical narratives provide a wealth of information that can be extracted using NLP and Deep Learning techniques. The objective of this paper is to improve on previous work in this area as part of the 2014 i2b2 challenge by identifying tags and attributes relevant to disease diagnosis, risk factors, and medications by providing advanced techniques of using stacked word embeddings. The i2b2 heart disease risk factors challenge dataset has shown significant improvement by using the approach of stacking embeddings, which combines various embeddings. Our model achieved an F1 score of 93.66% by using BERT and character embeddings (CHARACTER-BERT Embedding) stacking. The proposed model has significant results compared to all other models and systems that we developed for the 2014 i2b2 challenge.


Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records.

  • Riccardo Miotto‎ et al.
  • Scientific reports‎
  • 2016‎

Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name "deep patient". We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems.


An independently validated, portable algorithm for the rapid identification of COPD patients using electronic health records.

  • Su H Chu‎ et al.
  • Scientific reports‎
  • 2021‎

Electronic health records (EHR) provide an unprecedented opportunity to conduct large, cost-efficient, population-based studies. However, the studies of heterogeneous diseases, such as chronic obstructive pulmonary disease (COPD), often require labor-intensive clinical review and testing, limiting widespread use of these important resources. To develop a generalizable and efficient method for accurate identification of large COPD cohorts in EHRs, a COPD datamart was developed from 3420 participants meeting inclusion criteria in the Mass General Brigham Biobank. Training and test sets were selected and labeled with gold-standard COPD classifications obtained from chart review by pulmonologists. Multiple classes of algorithms were built utilizing both structured (e.g. ICD codes) and unstructured (e.g. medical notes) data via elastic net regression. Models explicitly including and excluding spirometry features were compared. External validation of the final algorithm was conducted in an independent biobank with a different EHR system. The final COPD classification model demonstrated excellent positive predictive value (PPV; 91.7%), sensitivity (71.7%), and specificity (94.4%). This algorithm performed well not only within the MGBB, but also demonstrated similar or improved classification performance in an independent biobank (PPV 93.5%, sensitivity 61.4%, specificity 90%). Ancillary comparisons showed that the classification model built including a binary feature for FEV1/FVC produced substantially higher sensitivity than those excluding. This study fills a gap in COPD research involving population-based EHRs, providing an important resource for the rapid, automated classification of COPD cases that is both cost-efficient and requires minimal information from unstructured medical records.


PetBERT: automated ICD-11 syndromic disease coding for outbreak detection in first opinion veterinary electronic health records.

  • Sean Farrell‎ et al.
  • Scientific reports‎
  • 2023‎

Effective public health surveillance requires consistent monitoring of disease signals such that researchers and decision-makers can react dynamically to changes in disease occurrence. However, whilst surveillance initiatives exist in production animal veterinary medicine, comparable frameworks for companion animals are lacking. First-opinion veterinary electronic health records (EHRs) have the potential to reveal disease signals and often represent the initial reporting of clinical syndromes in animals presenting for medical attention, highlighting their possible significance in early disease detection. Yet despite their availability, there are limitations surrounding their free text-based nature, inhibiting the ability for national-level mortality and morbidity statistics to occur. This paper presents PetBERT, a large language model trained on over 500 million words from 5.1 million EHRs across the UK. PetBERT-ICD is the additional training of PetBERT as a multi-label classifier for the automated coding of veterinary clinical EHRs with the International Classification of Disease 11 framework, achieving F1 scores exceeding 83% across 20 disease codings with minimal annotations. PetBERT-ICD effectively identifies disease outbreaks, outperforming current clinician-assigned point-of-care labelling strategies up to 3 weeks earlier. The potential for PetBERT-ICD to enhance disease surveillance in veterinary medicine represents a promising avenue for advancing animal health and improving public health outcomes.


Mortality prediction of patients in intensive care units using machine learning algorithms based on electronic health records.

  • Min Hyuk Choi‎ et al.
  • Scientific reports‎
  • 2022‎

Improving predictive models for intensive care unit (ICU) inpatients requires a new strategy that periodically includes the latest clinical data and can be updated to reflect local characteristics. We extracted data from all adult patients admitted to the ICUs of two university hospitals with different characteristics from 2006 to 2020, and a total of 85,146 patients were included in this study. Machine learning algorithms were trained to predict in-hospital mortality. The predictive performance of conventional scoring models and machine learning algorithms was assessed by the area under the receiver operating characteristic curve (AUROC). The conventional scoring models had various predictive powers, with the SAPS III (AUROC 0.773 [0.766-0.779] for hospital S) and APACHE III (AUROC 0.803 [0.795-0.810] for hospital G) showing the highest AUROC among them. The best performing machine learning models achieved an AUROC of 0.977 (0.973-0.980) in hospital S and 0.955 (0.950-0.961) in hospital G. The use of ML models in conjunction with conventional scoring systems can provide more useful information for predicting the prognosis of critically ill patients. In this study, we suggest that the predictive model can be made more robust by training with the individual data of each hospital.


Validation of deep learning natural language processing algorithm for keyword extraction from pathology reports in electronic health records.

  • Yoojoong Kim‎ et al.
  • Scientific reports‎
  • 2020‎

Pathology reports contain the essential data for both clinical and research purposes. However, the extraction of meaningful, qualitative data from the original document is difficult due to the narrative and complex nature of such reports. Keyword extraction for pathology reports is necessary to summarize the informative text and reduce intensive time consumption. In this study, we employed a deep learning model for the natural language process to extract keywords from pathology reports and presented the supervised keyword extraction algorithm. We considered three types of pathological keywords, namely specimen, procedure, and pathology types. We compared the performance of the present algorithm with the conventional keyword extraction methods on the 3115 pathology reports that were manually labeled by professional pathologists. Additionally, we applied the present algorithm to 36,014 unlabeled pathology reports and analysed the extracted keywords with biomedical vocabulary sets. The results demonstrated the suitability of our model for practical application in extracting important data from pathology reports.


Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence.

  • Matthew D Nemesure‎ et al.
  • Scientific reports‎
  • 2021‎

Generalized anxiety disorder (GAD) and major depressive disorder (MDD) are highly prevalent and impairing problems, but frequently go undetected, leading to substantial treatment delays. Electronic health records (EHRs) collect a great deal of biometric markers and patient characteristics that could foster the detection of GAD and MDD in primary care settings. We approached the problem of predicting MDD and GAD using a novel machine learning pipeline to re-analyze data from an observational study. The pipeline constitutes an ensemble of algorithmically distinct machine learning methods, including deep learning. A sample of 4,184 undergraduate students completed the study, undergoing a general health screening and completing a psychiatric assessment for MDD and GAD. After explicitly excluding all psychiatric information, 59 biomedical and demographic features from the general health survey in addition to a set of engineered features were used for model training. We assessed the model's performance on a held-out test set and found an AUC of 0.73 (sensitivity: 0.66, specificity: 0.7) and 0.67 (sensitivity: 0.55, specificity: 0.7) for GAD, and MDD, respectively. Additionally, we used advanced techniques (SHAP values) to illuminate which features had the greatest impact on prediction for each disease. The top predictive features for MDD were being satisfied with living conditions and having public health insurance. The top predictive features for GAD were vaccinations being up to date and marijuana use. Our results indicate moderate predictive performance for the application of machine learning methods in detection of GAD and MDD based on EHR data. By identifying important predictors of GAD and MDD, these results may be used in future research to aid in the early detection of MDD and GAD.


Repurpose terbutaline sulfate for amyotrophic lateral sclerosis using electronic medical records.

  • Hyojung Paik‎ et al.
  • Scientific reports‎
  • 2015‎

Prediction of new disease indications for approved drugs by computational methods has been based largely on the genomics signatures of drugs and diseases. We propose a method for drug repositioning that uses the clinical signatures extracted from over 13 years of electronic medical records from a tertiary hospital, including >9.4 M laboratory tests from >530,000 patients, in addition to diverse genomics signatures. Cross-validation using over 17,000 known drug-disease associations shows this approach outperforms various predictive models based on genomics signatures and a well-known "guilt-by-association" method. Interestingly, the prediction suggests that terbutaline sulfate, which is widely used for asthma, is a promising candidate for amyotrophic lateral sclerosis for which there are few therapeutic options. In vivo tests using zebrafish models found that terbutaline sulfate prevents defects in axons and neuromuscular junction degeneration in a dose-dependent manner. A therapeutic potential of terbutaline sulfate was also observed when axonal and neuromuscular junction degeneration have already occurred in zebrafish model. Cotreatment with a β2-adrenergic receptor antagonist, butoxamine, suggests that the effect of terbutaline is mediated by activation of β2-adrenergic receptors.


Novel architecture for gated recurrent unit autoencoder trained on time series from electronic health records enables detection of ICU patient subgroups.

  • Kilian Merkelbach‎ et al.
  • Scientific reports‎
  • 2023‎

Electronic health records (EHRs) are used in hospitals to store diagnoses, clinician notes, examinations, lab results, and interventions for each patient. Grouping patients into distinct subsets, for example, via clustering, may enable the discovery of unknown disease patterns or comorbidities, which could eventually lead to better treatment through personalized medicine. Patient data derived from EHRs is heterogeneous and temporally irregular. Therefore, traditional machine learning methods like PCA are ill-suited for analysis of EHR-derived patient data. We propose to address these issues with a new methodology based on training a gated recurrent unit (GRU) autoencoder directly on health record data. Our method learns a low-dimensional feature space by training on patient data time series, where the time of each data point is expressed explicitly. We use positional encodings for time, allowing our model to better handle the temporal irregularity of the data. We apply our method to data from the Medical Information Mart for Intensive Care (MIMIC-III). Using our data-derived feature space, we can cluster patients into groups representing major classes of disease patterns. Additionally, we show that our feature space exhibits a rich substructure at multiple scales.


Comparing the effects of four common drug classes on the progression of mild cognitive impairment to dementia using electronic health records.

  • Jie Xu‎ et al.
  • Scientific reports‎
  • 2023‎

The objective of this study was to investigate the potential association between the use of four frequently prescribed drug classes, namely antihypertensive drugs, statins, selective serotonin reuptake inhibitors, and proton-pump inhibitors, and the likelihood of disease progression from mild cognitive impairment (MCI) to dementia using electronic health records (EHRs). We conducted a retrospective cohort study using observational EHRs from a cohort of approximately 2 million patients seen at a large, multi-specialty urban academic medical center in New York City, USA between 2008 and 2020 to automatically emulate the randomized controlled trials. For each drug class, two exposure groups were identified based on the prescription orders documented in the EHRs following their MCI diagnosis. During follow-up, we measured drug efficacy based on the incidence of dementia and estimated the average treatment effect (ATE) of various drugs. To ensure the robustness of our findings, we confirmed the ATE estimates via bootstrapping and presented associated 95% confidence intervals (CIs). Our analysis identified 14,269 MCI patients, among whom 2501 (17.5%) progressed to dementia. Using average treatment estimation and bootstrapping confirmation, we observed that drugs including rosuvastatin (ATE = - 0.0140 [- 0.0191, - 0.0088], p value < 0.001), citalopram (ATE = - 0.1128 [- 0.125, - 0.1005], p value < 0.001), escitalopram (ATE = - 0.0560 [- 0.0615, - 0.0506], p value < 0.001), and omeprazole (ATE = - 0.0201 [- 0.0299, - 0.0103], p value < 0.001) have a statistically significant association in slowing the progression from MCI to dementia. The findings from this study support the commonly prescribed drugs in altering the progression from MCI to dementia and warrant further investigation.


Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study.

  • Prakash Adekkanattu‎ et al.
  • Scientific reports‎
  • 2023‎

Left ventricular ejection fraction (EF) is a key measure in the diagnosis and treatment of heart failure (HF) and many patients experience changes in EF overtime. Large-scale analysis of longitudinal changes in EF using electronic health records (EHRs) is limited. In a multi-site retrospective study using EHR data from three academic medical centers, we investigated longitudinal changes in EF measurements in patients diagnosed with HF. We observed significant variations in baseline characteristics and longitudinal EF change behavior of the HF cohorts from a previous study that is based on HF registry data. Data gathered from this longitudinal study were used to develop multiple machine learning models to predict changes in ejection fraction measurements in HF patients. Across all three sites, we observed higher performance in predicting EF increase over a 1-year duration, with similarly higher performance predicting an EF increase of 30% from baseline compared to lower percentage increases. In predicting EF decrease we found moderate to high performance with low confidence for various models. Among various machine learning models, XGBoost was the best performing model for predicting EF changes. Across the three sites, the XGBoost model had an F1-score of 87.2, 89.9, and 88.6 and AUC of 0.83, 0.87, and 0.90 in predicting a 30% increase in EF, and had an F1-score of 95.0, 90.6, 90.1 and AUC of 0.54, 0.56, 0.68 in predicting a 30% decrease in EF. Among features that contribute to predicting EF changes, baseline ejection fraction measurement, age, gender, and heart diseases were found to be statistically significant.


ImmuSort, a database on gene plasticity and electronic sorting for immune cells.

  • Pingzhang Wang‎ et al.
  • Scientific reports‎
  • 2015‎

Gene expression is highly dynamic and plastic. We present a new immunological database, ImmuSort. Unlike other gene expression databases, ImmuSort provides a convenient way to view global differential gene expression data across thousands of experimental conditions in immune cells. It enables electronic sorting, which is a bioinformatics process to retrieve cell states associated with specific experimental conditions that are mainly based on gene expression intensity. A comparison of gene expression profiles reveals other applications, such as the evaluation of immune cell biomarkers and cell subsets, identification of cell specific and/or disease-associated genes or transcripts, comparison of gene expression in different transcript variants and probe set quality evaluation. A plasticity score is introduced to measure gene plasticity. Average rank and marker evaluation scores are used to evaluate biomarkers. The current version includes 31 human and 17 mouse immune cell groups, comprising 10,422 and 3,929 microarrays derived from public databases, respectively. A total of 20,283 human and 20,963 mouse genes are available to query in the database. Examples show the distinct advantages of the database. The database URL is http://202.85.212.211/Account/ImmuSort.html.


Detection of unknown ototoxic adverse drug reactions: an electronic healthcare record-based longitudinal nationwide cohort analysis.

  • Suehyun Lee‎ et al.
  • Scientific reports‎
  • 2021‎

Ototoxic medications can lead to significant morbidity. Thus, pre-marketing clinical trials have assessed new drugs that have ototoxic potential. Nevertheless, several ototoxic side effects of drugs may remain undetected. Hence, we sought to retrospectively investigate the potential risk of ototoxic adverse drug reactions among commonly used drugs via a longitudinal cohort study. An electronic health records-based data analysis with a propensity-matched comparator group was carried out. This study was conducted using the MetaNurse algorithm for standard nursing statements on electronic healthcare records and the National Sample Cohort obtained from the South Korea National Health Insurance Service. Five target drugs capable of causing ototoxic adverse drug reactions were identified using MetaNurse; two drugs were excluded after database-based analysis because of the absence of bilateral hearing loss events in patients. Survival analysis, log-rank test, and Cox proportional hazards regression models were used to calculate the incidence, survival rate, and hazard ratio of bilateral hearing loss among patients who were prescribed candidate ototoxic drugs. The adjusted hazard ratio of bilateral hearing loss was 1.31 (1.03-1.68), 2.20 (1.05-4.60), and 2.26 (1.18-4.33) in cimetidine, hydroxyzine, and sucralfate users, respectively. Our results indicated that hydroxyzine and sucralfate may cause ototoxic adverse drug reactions in patients. Thus, clinicians should consider avoiding co-administration of these drugs with other well-confirmed ototoxic drugs should be emphasized.


Mexican traditional medicines for women's reproductive health.

  • Paulina Cabada-Aguirre‎ et al.
  • Scientific reports‎
  • 2023‎

Like China, Mexico has a traditional system of medicine dating back almost 5000 years that incorporates the healing practices of pre-Columbian civilizations, including the Maya and Aztec. Mexican Traditional Medicine (MTM) women depend on MTM practices and herbal medicines for their primary healthcare needs as limited access and high costs of Western medicine is a significant problem. The aims of this work were to determine the medicinal plants more commonly used in MTM for women's reproductive health issues and assess the clinical data supporting their use. Data from multiple sources was compiled and information on plants commonly used by women in Mexico MTM for the treatment of fertility and menstruation issues, pregnancy, and menopause was analyzed. Analysis of the data show that 185 species of plants representing > 60 families were used for a wide range of reproductive health issues. Some of these plants have been used in MTM for fertility regulation in women of which 35 species were used as emmenagogues and abortifacients. Approximate 40 species were used for the symptoms of premenstrual syndrome, heavy menstrual bleeding, and dysmenorrhea. In terms of pregnancy, 35 species were used for postpartum care and to facilitate breastfeeding, 16 species were used as oxytocic agents to induce labor and speed birth, and six plant species were used to prevent miscarriage. Fourteen plant species were reported to treat infertility or promote fertility, and seven species were used to treat uterine prolapse. Three plants species were reported to treat menopause and two plants were used for osteoporosis. Analysis of the clinical data for commonly used medicinal plants showed some clinical support for the use of these plants in MTM. In Mexico, women use medicinal plants for almost every aspect of reproductive health. While some plants have clinical data, most medicinal plants used in MTM have no safety or efficacy data available and could serve as the basis of future investigations.


Computational chemoproteomics to understand the role of selected psychoactives in treating mental health indications.

  • Jonathan Fine‎ et al.
  • Scientific reports‎
  • 2019‎

We have developed the Computational Analysis of Novel Drug Opportunities (CANDO) platform to infer homology of drug behaviour at a proteomic level by constructing and analysing structural compound-proteome interaction signatures of 3,733 compounds with 48,278 proteins in a shotgun manner. We applied the CANDO platform to predict putative therapeutic properties of 428 psychoactive compounds that belong to the phenylethylamine, tryptamine, and cannabinoid chemical classes for treating mental health indications. Our findings indicate that these 428 psychoactives are among the top-ranked predictions for a significant fraction of mental health indications, demonstrating a significant preference for treating such indications over non-mental health indications, relative to randomized controls. Also, we analysed the use of specific tryptamines for the treatment of sleeping disorders, bupropion for substance abuse disorders, and cannabinoids for epilepsy. Our innovative use of the CANDO platform may guide the identification and development of novel therapies for mental health indications and provide an understanding of their causal basis on a detailed mechanistic level. These predictions can be used to provide new leads for preclinical drug development for mental health and other neurological disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: