Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 176 papers

Cannabinoids Drugs and Oral Health-From Recreational Side-Effects to Medicinal Purposes: A Systematic Review.

  • Luigi Bellocchio‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

marijuana, the common name for cannabis sativa preparations, is one of the most consumed drug all over the world, both at therapeutical and recreational levels. With the legalization of medical uses of cannabis in many countries, and even its recreational use in most of these, the prevalence of marijuana use has markedly risen over the last decade. At the same time, there is also a higher prevalence in the health concerns related to cannabis use and abuse. Thus, it is mandatory for oral healthcare operators to know and deal with the consequences and effects of cannabis use on oral cavity health. This review will briefly summarize the components of cannabis and the endocannabinoid system, as well as the cellular and molecular mechanisms of biological cannabis action in human cells and biologic activities on tissues. We will also look into oropharyngeal tissue expression of cannabinoid receptors, together with a putative association of cannabis to several oral diseases. Therefore, this review will elaborate the basic biology and physiology of cannabinoids in human oral tissues with the aim of providing a better comprehension of the effects of its use and abuse on oral health, in order to include cannabinoid usage into dental patient health records as well as good medicinal practice.


Vitamin C and Heart Health: A Review Based on Findings from Epidemiologic Studies.

  • Melissa A Moser‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Vitamin C is a powerful dietary antioxidant that has received considerable attention in the literature related to its possible role in heart health. Although classical vitamin C deficiency, marked by scurvy, is rare in most parts of the world, some research has shown variable heart disease risks depending on plasma vitamin C concentration, even within the normal range. Furthermore, other studies have suggested possible heart-related benefits to vitamin C taken in doses beyond the minimal amounts required to prevent classically defined deficiency. The objective of this review is to systematically review the findings of existing epidemiologic research on vitamin C and its potential role in cardiovascular disease (CVD). It is well established that vitamin C inhibits oxidation of LDL-protein, thereby reducing atherosclerosis, but the cardiovascular outcomes related to this action and other actions of vitamin C are not fully understood. Randomized controlled trials as well as observational cohort studies have investigated this topic with varying results. Vitamin C has been linked in some work to improvements in lipid profiles, arterial stiffness, and endothelial function. However, other studies have failed to confirm these results, and observational cohort studies are varied in their findings on the vitamin's effect on CVD risk and mortality. Overall, current research suggests that vitamin C deficiency is associated with a higher risk of mortality from CVD and that vitamin C may slightly improve endothelial function and lipid profiles in some groups, especially those with low plasma vitamin C levels. However, the current literature provides little support for the widespread use of vitamin C supplementation to reduce CVD risk or mortality.


Effects of Short-Chain Fatty Acids on Human Oral Epithelial Cells and the Potential Impact on Periodontal Disease: A Systematic Review of In Vitro Studies.

  • Gabriel Leonardo Magrin‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Short-chain fatty acids (SCFA), bacterial metabolites released from dental biofilm, are supposed to target the oral epithelium. There is, however, no consensus on how SCFA affect the oral epithelial cells. The objective of the present study was to systematically review the available in vitro evidence of the impact of SCFA on human oral epithelial cells in the context of periodontal disease. A comprehensive electronic search using five databases along with a grey literature search was performed. In vitro studies that evaluated the effects of SCFA on human oral epithelial cells were eligible for inclusion. Risk of bias was assessed by the University of Bristol's tool for assessing risk of bias in cell culture studies. Certainty in cumulative evidence was evaluated using GRADE criteria (grading of recommendations assessment, development, and evaluation). Of 3591 records identified, 10 were eligible for inclusion. A meta-analysis was not possible due to the heterogeneity between the studies. The risk of bias across the studies was considered "serious" due to the presence of methodological biases. Despite these limitations, this review showed that SCFA negatively affect the viability of oral epithelial cells by activating a series of cellular events that includes apoptosis, autophagy, and pyroptosis. SCFA impair the integrity and presumably the transmigration of leucocytes through the epithelial layer by changing junctional and adhesion protein expression, respectively. SCFA also affect the expression of chemokines and cytokines in oral epithelial cells. Future research needs to identify the underlying signaling cascades and to translate the in vitro findings into preclinical models.


Therapeutic Hypothermia Attenuates Cortical Interneuron Loss after Cerebral Ischemia in Near-Term Fetal Sheep.

  • Panzao Yang‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Therapeutic hypothermia significantly improves outcomes after neonatal hypoxic-ischemic (HI) encephalopathy but is only partially protective. There is evidence that cortical inhibitory interneuron circuits are particularly vulnerable to HI and that loss of interneurons may be an important contributor to long-term neurological dysfunction in these infants. In the present study, we examined the hypothesis that the duration of hypothermia has differential effects on interneuron survival after HI. Near-term fetal sheep received sham ischemia or cerebral ischemia for 30 min, followed by cerebral hypothermia from 3 h after ischemia end and continued up to 48 h, 72 h, or 120 h recovery. Sheep were euthanized after 7 days for histology. Hypothermia up to 48 h recovery resulted in moderate neuroprotection of glutamate decarboxylase (GAD)+ and parvalbumin+ interneurons but did not improve survival of calbindin+ cells. Hypothermia up to 72 h recovery was associated with significantly increased survival of all three interneuron phenotypes compared with sham controls. By contrast, while hypothermia up to 120 h recovery did not further improve (or impair) GAD+ or parvalbumin+ neuronal survival compared with hypothermia up to 72 h, it was associated with decreased survival of calbindin+ interneurons. Finally, protection of parvalbumin+ and GAD+ interneurons, but not calbindin+ interneurons, with hypothermia was associated with improved recovery of electroencephalographic (EEG) power and frequency by day 7 after HI. The present study demonstrates differential effects of increasing the duration of hypothermia on interneuron survival after HI in near-term fetal sheep. These findings may contribute to the apparent preclinical and clinical lack of benefit of very prolonged hypothermia.


Biomarkers of Periodontitis and Its Differential DNA Methylation and Gene Expression in Immune Cells: A Systematic Review.

  • Angélica M Cárdenas‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The characteristic epigenetic profile of periodontitis found in peripheral leukocytes denotes its impact on systemic immunity. In fact, this profile not only stands for periodontitis as a low-grade inflammatory disease with systemic effects but also as an important source of potentially valuable clinical biomarkers of its systemic effects and susceptibility to other inflammatory conditions. Thus, we aimed to identify relevant genes tested as epigenetic systemic biomarkers in patients with periodontitis, based on the DNA methylation patterns and RNA expression profiles in peripheral immune cells. A detailed protocol was designed following the Preferred Reporting Items for Systematic Review and Meta-analysis -PRISMA guideline. Only cross-sectional and case-control studies that reported potential systemic biomarkers of periodontitis in peripheral immune cell types were included. DNA methylation was analyzed in leukocytes, and gene expression was in polymorphonuclear and mononuclear cells. Hypermethylation was found in TLR regulators genes: MAP3K7, MYD88, IL6R, RIPK2, FADD, IRAK1BP1, and PPARA in early stages of periodontitis, while advanced stages presented hypomethylation of these genes. TGFB1I1, VNN1, HLADRB4, and CXCL8 genes were differentially expressed in lymphocytes and monocytes of subjects with poorly controlled diabetes mellitus, dyslipidemia, and periodontitis in comparison with controls. The DAB2 gene was differentially overexpressed in periodontitis and dyslipidemia. Peripheral blood neutrophils in periodontitis showed differential expression in 163 genes. Periodontitis showed an increase in ceruloplasmin gene expression in polymorphonuclears in comparison with controls. Several genes highlight the role of the epigenetics of peripheral inflammatory cells in periodontitis that could be explored in blood as a source of biomarkers for routine testing.


Roles of Exosomes in Chronic Rhinosinusitis: A Systematic Review.

  • Karolina Dżaman‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The pathophysiology of chronic rhinosinusitis (CRS) is multifactorial and not entirely clear. The objective of the review was to examine the current state of knowledge concerning the role of exosomes in CRS. For this systematic review, we searched PubMed/MEDLINE, Scopus, CENTRAL, and Web of Science databases for studies published until 7 August 2022. Only original research articles describing studies published in English were included. Reviews, book chapters, case studies, conference papers, and opinions were excluded. The quality of the evidence was assessed with the modified Office and Health Assessment and Translation (OHAT) Risk of Bias Rating Tool for Human and Animal Studies. Of 250 records identified, 17 were eligible, all of which had a low to moderate risk of overall bias. Presented findings indicate that exosomal biomarkers, including proteins and microRNA, act as promising biomarkers in the diagnostics and prognosis of CRS patients and, in addition, may contribute to finding novel therapeutic targets. Exosomes reflecting tissue proteomes are excellent, highly available material for studying proteomic alterations noninvasively. The first steps have already been taken, but more advanced research on nasal exosomes is needed, which might open a wider door for individualized medicine in CRS.


Effects of the Escherichia coli Bacterial Toxin Cytotoxic Necrotizing Factor 1 on Different Human and Animal Cells: A Systematic Review.

  • Francesca Carlini‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Cytotoxic necrotizing factor 1 (CNF1) is a bacterial virulence factor, the target of which is represented by Rho GTPases, small proteins involved in a huge number of crucial cellular processes. CNF1, due to its ability to modulate the activity of Rho GTPases, represents a widely used tool to unravel the role played by these regulatory proteins in different biological processes. In this review, we summarized the data available in the scientific literature concerning the observed in vitro effects induced by CNF1. An article search was performed on electronic bibliographic resources. Screenings were performed of titles, abstracts, and full-texts according to PRISMA guidelines, whereas eligibility criteria were defined for in vitro studies. We identified a total of 299 records by electronic article search and included 76 original peer-reviewed scientific articles reporting morphological or biochemical modifications induced in vitro by soluble CNF1, either recombinant or from pathogenic Escherichia coli extracts highly purified with chromatographic methods. Most of the described CNF1-induced effects on cultured cells are ascribable to the modulating activity of the toxin on Rho GTPases and the consequent effects on actin cytoskeleton organization. All in all, the present review could be a prospectus about the CNF1-induced effects on cultured cells reported so far.


Vitreoretinal Surgery in the Prevention and Treatment of Toxic Tumour Syndrome in Uveal Melanoma: A Systematic Review.

  • Mario R Romano‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Toxic tumour syndrome (TTS) is a particularly aggressive form of secondary vasculopathy occurring after radiation therapy of uveal melanoma due to the persistence of the necrotic tumour mass inside the eye. The development of TTS confers a particularly unfavourable functional and anatomical ocular prognosis, ultimately requiring enucleation in most cases if untreated. Vitreoretinal (VR) surgery has been successfully applied for treatment and prevention of TTS using both resecting and non-resecting techniques. In this systematic review, we aim to define characteristics of uveal melanomas benefiting the most from secondary VR surgery and to outline the optimal type and timing of VR intervention in such cases. Analysis of the literature reveals that endoresection should be performed within 3 months after radiotherapy to tumours thicker than 7 mm and with a largest basal diameter between 8 mm and 15 mm with post-equatorial location, especially after proton beam treatment. Alternatively, endodrainage remains a valid therapeutic option in eyes with macula-off retinal detachment, tumour diameter larger than 15 mm or ciliary body involvement. VR surgery can be successful in the management of TTS following radiotherapy for uveal melanoma when timing and indication are appropriately evaluated.


Expression of MicroRNAs in Periodontal and Peri-Implant Diseases: A Systematic Review and Meta-Analysis.

  • Farah Asa'ad‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The purpose of this review was to evaluate the expression patterns of miRNAs in periodontal and peri-implant diseases, while identifying potential miRNAs with the greatest diagnostic ability as an oral fluid biomarker.


Autologous Platelet Concentrates in Treatment of Furcation Defects-A Systematic Review and Meta-Analysis.

  • Sourav Panda‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The aim of this review was to evaluate the adjunctive effect of autologous platelet concentrates (APCs) for the treatment of furcation defects, in terms of scientific quality of the clinical trials and regeneration parameters assessment.


Connexin Hemichannel Mimetic Peptide Attenuates Cortical Interneuron Loss and Perineuronal Net Disruption Following Cerebral Ischemia in Near-Term Fetal Sheep.

  • Panzao Yang‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Perinatal hypoxia-ischemia is associated with disruption of cortical gamma-aminobutyric acid (GABA)ergic interneurons and their surrounding perineuronal nets, which may contribute to persisting neurological deficits. Blockade of connexin43 hemichannels using a mimetic peptide can alleviate seizures and injury after hypoxia-ischemia. In this study, we tested the hypothesis that connexin43 hemichannel blockade improves the integrity of cortical interneurons and perineuronal nets. Term-equivalent fetal sheep received 30 min of bilateral carotid artery occlusion, recovery for 90 min, followed by a 25-h intracerebroventricular infusion of vehicle or a mimetic peptide that blocks connexin hemichannels or by a sham ischemia + vehicle infusion. Brain tissues were stained for interneuronal markers or perineuronal nets. Cerebral ischemia was associated with loss of cortical interneurons and perineuronal nets. The mimetic peptide infusion reduced loss of glutamic acid decarboxylase-, calretinin-, and parvalbumin-expressing interneurons and perineuronal nets. The interneuron and perineuronal net densities were negatively correlated with total seizure burden after ischemia. These data suggest that the opening of connexin43 hemichannels after perinatal hypoxia-ischemia causes loss of cortical interneurons and perineuronal nets and that this exacerbates seizures. Connexin43 hemichannel blockade may be an effective strategy to attenuate seizures and may improve long-term neurological outcomes after perinatal hypoxia-ischemia.


Diet Quality and Cancer Outcomes in Adults: A Systematic Review of Epidemiological Studies.

  • Jennifer Potter‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Dietary patterns influence cancer risk. However, systematic reviews have not evaluated relationships between a priori defined diet quality scores and adult cancer risk and mortality. The aims of this systematic review are to (1) describe diet quality scores used in cohort or cross-sectional research examining cancer outcomes; and (2) describe associations between diet quality scores and cancer risk and mortality. The protocol was registered in Prospero, and a systematic search using six electronic databases was conducted through to December 2014. Records were assessed for inclusion by two independent reviewers, and quality was evaluated using a validated tool. Sixty-four studies met inclusion criteria from which 55 different diet quality scores were identified. Of the 35 studies investigating diet quality and cancer risk, 60% (n = 21) found a positive relationship. Results suggest no relationship between diet quality scores and overall cancer risk. Inverse associations were found for diet quality scores and risk of postmenopausal breast, colorectal, head, and neck cancer. No consistent relationships between diet quality scores and cancer mortality were found. Diet quality appears to be related to site-specific adult cancer risk. The relationship with cancer mortality is less conclusive, suggesting additional factors impact overall cancer survival. Development of a cancer-specific diet quality score for application in prospective epidemiology and in public health is warranted.


A Systematic Review and Meta-Analysis of Advanced Biomarkers for Predicting Incident Cardiovascular Disease among Asymptomatic Middle-Aged Adults.

  • Juan Luis Romero-Cabrera‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Cardiovascular disease (CVD) continues as the most important cause of mortality. Better risk screening and prediction are needed to reduce the cardiovascular disease burden. The aim of the study was to assess the role of serum biomarkers in the prediction of CVD among asymptomatic middle-aged adults with no prior CVD history. A systematic review and meta-analysis were carried out using literature from PubMed and following PRISMA reporting guidelines. Twenty-five studies met our inclusion criteria and were included in the systematic review. The most commonly studied biomarker was high-sensitivity C reactive protein (hs-CRP) (10 studies), which showed that higher hs-CRP levels are associated with an increased risk of subsequent CVD events and mortality. In addition, several less-studied biomarkers (N-terminal pro-brain natriuretic peptide (NT-proBNP), fibrinogen, gamma-glutamyl transferase (GGT), and others) also showed significant associations with greater future risk of CVD. A meta-analysis was possible to perform for hs-CRP and NT-proBNP, which showed statistically significant results for the ability of hs-CRP (hazard ratio (HR) 1.19, (95% CI: 1.09−1.30), p < 0.05) and NT-proBNP (HR 1.22, (1.13−1.32), p < 0.05) to predict incident CVD among middle-aged adults without a prior CVD history or symptoms. Several serum biomarkers, particularly hs-CRP and NT-proBNP, have the potential to improve primary CVD risk prevention among asymptomatic middle-aged adults.


Comparison of Homologous and Heterologous Booster SARS-CoV-2 Vaccination in Autoimmune Rheumatic and Musculoskeletal Patients.

  • Dániel Honfi‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Vaccination against SARS-CoV-2 to prevent COVID-19 is highly recommended for immunocompromised patients with autoimmune rheumatic and musculoskeletal diseases (aiRMDs). Little is known about the effect of booster vaccination or infection followed by previously completed two-dose vaccination in aiRMDs. We determined neutralizing anti-SARS-CoV-2 antibody levels and applied flow cytometric immunophenotyping to quantify the SARS-CoV-2 reactive B- and T-cell mediated immunity in aiRMDs receiving homologous or heterologous boosters or acquired infection following vaccination. Patients receiving a heterologous booster had a higher proportion of IgM+ SARS-CoV-2 S+ CD19+CD27+ peripheral memory B-cells in comparison to those who acquired infection. Biologic therapy decreased the number of S+CD19+; S+CD19+CD27+IgG+; and S+CD19+CD27+IgM+ B-cells. The response rate to a booster event in cellular immunity was the highest in the S-, M-, and N-reactive CD4+CD40L+ T-cell subset. Patients with a disease duration of more than 10 years had higher proportions of CD8+TNF-α+ and CD8+IFN-γ+ T-cells in comparison to patients who were diagnosed less than 10 years ago. We detected neutralizing antibodies, S+ reactive peripheral memory B-cells, and five S-, M-, and N-reactive T-cells subsets in our patient cohort showing the importance of booster events. Biologic therapy and <10 years disease duration may confound anti-SARS-CoV-2 specific immunity in aiRMDs.


The Slow-Releasing and Mitochondria-Targeted Hydrogen Sulfide (H2S) Delivery Molecule AP39 Induces Brain Tolerance to Ischemia.

  • Bartosz Pomierny‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Ischemic stroke is the third leading cause of death in the world, which accounts for almost 12% of the total deaths worldwide. Despite decades of research, the available and effective pharmacotherapy is limited. Some evidence underlines the beneficial properties of hydrogen sulfide (H2S) donors, such as NaSH, in an animal model of brain ischemia and in in vitro research; however, these data are ambiguous. This study was undertaken to verify the neuroprotective activity of AP39, a slow-releasing mitochondria-targeted H2S delivery molecule. We administered AP39 for 7 days prior to ischemia onset, and the potential to induce brain tolerance to ischemia was verified. To do this, we used the rat model of 90-min middle cerebral artery occlusion (MCAO) and used LC-MS/MS, RT-PCR, LuminexTM assays, Western blot and immunofluorescent double-staining to determine the absolute H2S levels, inflammatory markers, neurotrophic factor signaling pathways and apoptosis marker in the ipsilateral frontal cortex, hippocampus and in the dorsal striatum 24 h after ischemia onset. AP39 (50 nmol/kg) reduced the infarct volume, neurological deficit and reduced the microglia marker (Iba1) expression. AP39 also exerted prominent anti-inflammatory activity in reducing the release of Il-1β, Il-6 and TNFα in brain areas particularly affected by ischemia. Furthermore, AP39 enhanced the pro-survival pathways of neurotrophic factors BDNF-TrkB and NGF-TrkA and reduced the proapoptotic proNGF-p75NTR-sortilin pathway activity. These changes corresponded with reduced levels of cleaved caspase 3. Altogether, AP39 treatment induced adaptative changes within the brain and, by that, developed brain tolerance to ischemia.


Hippocampal Noradrenaline Is a Positive Regulator of Spatial Working Memory and Neurogenesis in the Rat.

  • Rosario Gulino‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Loss of noradrenaline (NA)-rich afferents from the Locus Coeruleus (LC) ascending to the hippocampal formation has been reported to dramatically affect distinct aspects of cognitive function, in addition to reducing the proliferation of neural progenitors in the dentate gyrus. Here, the hypothesis that reinstating hippocampal noradrenergic neurotransmission with transplanted LC-derived neuroblasts would concurrently normalize both cognitive performance and adult hippocampal neurogenesis was investigated. Post-natal day (PD) 4 rats underwent selective immunolesioning of hippocampal noradrenergic afferents followed, 4 days later, by the bilateral intrahippocampal implantation of LC noradrenergic-rich or control cerebellar (CBL) neuroblasts. Starting from 4 weeks and up to about 9 months post-surgery, sensory-motor and spatial navigation abilities were evaluated, followed by post-mortem semiquantitative tissue analyses. All animals in the Control, Lesion, Noradrenergic Transplant and Control CBL Transplant groups exhibited normal sensory-motor function and were equally efficient in the reference memory version of the water maze task. By contrast, working memory abilities were seen to be consistently impaired in the Lesion-only and Control CBL-Transplanted rats, which also exhibited a virtually complete noradrenergic fiber depletion and a significant 62-65% reduction in proliferating 5-bromo-2'deoxyuridine (BrdU)-positive progenitors in the dentate gyrus. Notably, the noradrenergic reinnervation promoted by the grafted LC, but not cerebellar neuroblasts, significantly ameliorated working memory performance and reinstated a fairly normal density of proliferating progenitors. Thus, LC-derived noradrenergic inputs may act as positive regulators of hippocampus-dependent spatial working memory possibly via the concurrent maintenance of normal progenitor proliferation in the dentate gyrus.


The Impact of Physical Exercise on the Circulating Levels of BDNF and NT 4/5: A Review.

  • Daniel Ribeiro‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

(1) Background: One mechanism through which physical activity (PA) provides benefits is by triggering activity at a molecular level, where neurotrophins (NTs) are known to play an important role. However, the expression of the circulating levels of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4/5), in response to exercise, is not fully understood. Therefore, the aim was to provide an updated overview on the neurotrophin (NT) variation levels of BDNF and NT-4/5 as a consequence of a long-term aerobic exercise intervention, and to understand and describe whether the upregulation of circulating NT levels is a result of neurotrophic factors produced and released from the brain, and/or from neurotrophic secreting peripheral organs. (2) Methods: The articles were collected from PubMed, SPORTDiscus, Web of Science, MEDLINE, and Embase. Data were analyzed through a narrative synthesis. (3) Results: 30 articles studied humans who performed training protocols that ranged from 4 to 48 weeks; 22 articles studied rodents with an intervention period that ranged from 4 to 64 weeks. (4) Conclusions: There is no unanimity between the upregulation of BDNF in humans; conversely, concerning both BDNF and NT-4/5 in animal models, the results are heterogeneous. Whilst BDNF upregulation appears to be in relative agreement, NT-4/5 seems to display contradictory and inconsistent conclusions.


Dissecting the Proton Transport Pathway in Oral Squamous Cell Carcinoma: State of the Art and Theranostics Implications.

  • Alejandro I Lorenzo-Pouso‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Cancer cells overexpress proton exchangers at the plasma membrane in order acidify the extracellular matrix and maintain the optimal pH for sustaining cancer growth. Among the families of proton exchangers implicated in carcinogenesis, carbonic anhydrases (CAs), monocarboxylate transporters (MCTs), Na+/H+ exchangers (NHEs), sodium bicarbonate cotransporters (NBCs), and vacuolar ATPases (V-ATPases) are highlighted. Considerable research has been carried out into the utility of the understanding of these machineries in the diagnosis and prognosis of several solid tumors. In addition, as therapeutic targets, the interference of their functions has contributed to the discovery or optimization of cancer therapies. According to recent reports, the study of these mechanisms seems promising in the particular case of oral squamous cell carcinoma (OSCC). In the present review, the latest advances in these fields are summarized, in particular, the usefulness of proton exchangers as potential prognostic biomarkers and therapeutic targets in OSCC.


Difference in Levels of Vitamin D between Indoor and Outdoor Athletes: A Systematic Review and Meta-Analysis.

  • Maria Bârsan‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Vitamin D, its importance in different processes taking place in the human body, the effects of abnormal levels of this hormone, either too low or too high, and the need for supplementation have been extensively researched thus far. Variances in exposure to sunlight can cause vitamin D levels to fluctuate. Indoor activity can be a factor for these fluctuations and can lead to a decrease in vitamin D levels. We conducted a systematic review and meta-analysis aiming to identify whether indoor compared to outdoor training has a significant influence on vitamin D levels; we also performed subgroup analyses and multivariate meta-regression. The type of training has an impact on vitamin D levels that is influenced by multiple cofounders. In a subgroup analysis not considering cofounders, the mean serum vitamin D was 3.73 ng/mL higher in outdoor athletes, a difference which barely fails to achieve significance (p = 0.052, a total sample size of 5150). The indoor-outdoor difference is only significant (clinically and statistically) when considering studies performed exclusively on Asian athletes (a mean difference of 9.85 ng/mL, p < 0.01, and a total sample size of 303). When performing the analyses within each season, no significant differences are observed between indoor and outdoor athletes. To control for multiple cofounders (the season, latitude, and Asian/Caucasian race) simultaneously, we constructed a multivariate meta-regression model, which estimated a serum vitamin D concentration lower by 4.446 ng/mL in indoor athletes. While a multivariate model suggests that outdoor training is associated with slightly higher vitamin D concentrations when controlling for the season, latitude, and Asian/Caucasian race, the type of training has a numerically and clinically small impact. This suggests that vitamin D levels and the need for supplementation should not be decided based on training type alone.


Proteomics and Metabolomics Approaches towards a Functional Insight onto AUTISM Spectrum Disorders: Phenotype Stratification and Biomarker Discovery.

  • Maria Vittoria Ristori‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by behavioral alterations and currently affect about 1% of children. Significant genetic factors and mechanisms underline the causation of ASD. Indeed, many affected individuals are diagnosed with chromosomal abnormalities, submicroscopic deletions or duplications, single-gene disorders or variants. However, a range of metabolic abnormalities has been highlighted in many patients, by identifying biofluid metabolome and proteome profiles potentially usable as ASD biomarkers. Indeed, next-generation sequencing and other omics platforms, including proteomics and metabolomics, have uncovered early age disease biomarkers which may lead to novel diagnostic tools and treatment targets that may vary from patient to patient depending on the specific genomic and other omics findings. The progressive identification of new proteins and metabolites acting as biomarker candidates, combined with patient genetic and clinical data and environmental factors, including microbiota, would bring us towards advanced clinical decision support systems (CDSSs) assisted by machine learning models for advanced ASD-personalized medicine. Herein, we will discuss novel computational solutions to evaluate new proteome and metabolome ASD biomarker candidates, in terms of their recurrence in the reviewed literature and laboratory medicine feasibility. Moreover, the way to exploit CDSS, performed by artificial intelligence, is presented as an effective tool to integrate omics data to electronic health/medical records (EHR/EMR), hopefully acting as added value in the near future for the clinical management of ASD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: