Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

High sodium intake does not worsen low potassium-induced kidney damage.

  • Yahua Zhang‎ et al.
  • Physiological reports‎
  • 2023‎

High sodium and low potassium intake have both been linked to poor cardiovascular health outcomes and increased mortality rates. A combination of the two is thought to be particularly detrimental. While mechanisms are multiple, the kidney is an important target of harmful effects and low potassium influences on both proximal and distal nephron segments are especially potent. We recently reported that a combined high sodium/low potassium diet causes kidney injury and that low potassium in isolation can have similar effects. However, how sodium intake alters this process is not well-understood. Here we tested the hypothesis that a high sodium intake amplifies effects of low dietary potassium on kidney injury. We observed adding high sodium to low potassium caused an expected increase in blood pressure, but did not worsen markers of kidney injury, inflammation, and fibrosis. It also did not increase abundance or phosphorylation of the sodium chloride cotransporter or its regulatory kinases, SPAK and OxSR1, known renal targets of low potassium. Findings support the claim that dietary potassium deficiency, and not high sodium, is a dominant factor affecting kidney injury in animal models of high sodium/low potassium intake. This suggests further investigation is required to identify optimal ranges of sodium and potassium intake in both healthy populations and in those with kidney disease.


Physiological and biochemical changes associated with acute experimental dehydration in the desert adapted mouse, Peromyscus eremicus.

  • Lauren Kordonowy‎ et al.
  • Physiological reports‎
  • 2017‎

Characterizing traits critical for adaptation to a given environment is an important first step in understanding how phenotypes evolve. How animals adapt to the extreme heat and aridity commonplace to deserts is an exceptionally interesting example of these processes, and has been the focus of study for decades. In contrast to those studies, where experiments are conducted on either wild animals or captive animals held in non-desert conditions, the study described here leverages a unique environmental chamber that replicates desert conditions for captive Peromyscus eremicus (cactus mouse). Here, we establish baseline values for daily water intake and for serum electrolytes, as well as the response of these variables to acute experimental dehydration. In brief, P eremicus daily water intake is very low. Its serum electrolytes are distinct from many previously studied animals, and its response to acute dehydration is profound, though not suggestive of renal impairment, which is atypical of mammals.


Changes in salivary electrolyte concentrations in mid-distance trained sled dogs during 12 weeks of incremental conditioning.

  • James R Templeman‎ et al.
  • Physiological reports‎
  • 2020‎

Regular exercise improves the health status of dogs; however, extreme exertion in the absence of adequate fluid and electrolyte replacement may negatively impact health and performance due to dehydration and cardiovascular stress. Unlike humans and horses, dogs thermoregulate predominantly through respiration and salivation, yet there is a dearth of literature defining exercise-induced changes to canine salivary electrolytes. The study objective was to investigate the effects of exercise on salivary electrolyte concentrations, and to determine if adaptations may occur in response to incremental conditioning in client-owned Siberian Huskies. Sixteen dogs were used, with an average age of 4.8 ± 2.5 years and body weight of 24.3 ± 4.3 kg. A 12-week exercise regimen was designed to increase in distance each week, but weather played a role in setting the daily distance. Saliva samples were collected at weeks 0 (pre-run, 5.7 km), 5 (pre-run, 5.7, 39.0 km), and 11 (pre-run, 5.7, 39.0 km). Samples were analyzed for sodium, chloride, potassium, calcium, magnesium, and phosphorous using photometric and indirect ion-selective electrode analysis. When compared across weeks, sodium, chloride, potassium, and calcium concentrations did not differ at any sampling time point; however, phosphorus and magnesium concentrations increased from baseline. Data were then pooled across weeks to evaluate changes due to distance and level of conditioning. Sodium, chloride, and magnesium concentrations increased progressively with distance ran, suggesting that these electrolytes are primarily being lost as exercising dogs salivate. Repletion of these minerals may assist in preventing exercise-induced electrolyte imbalance in physically active dogs.


Early diabetic kidney maintains the corticomedullary urea and sodium gradient.

  • Haiyun Qi‎ et al.
  • Physiological reports‎
  • 2016‎

Early diabetic nephropathy is largely undetectable before substantial functional changes have occurred. In the present study, we investigated the distribution of electrolytes and urea in the early diabetic kidney in order to explore whether pathophysiological and metabolic changes appear concomitantly with a decreased sodium and urea gradient. By using hyperpolarized (13)C urea it was possible to measure the essential intrarenal electrolyte gradients and the acute changes following furosemide treatment. No differences in either intrarenal urea or sodium gradients were observed in early diabetes compared to healthy controls. These results indicate that the early metabolic and hypertrophic changes occurring in the diabetic kidney prelude the later functional alterations in diabetic kidney function, thus driving the increased metabolic demand commonly occurring in the diabetic kidney.


Paradoxical activation of the sodium chloride cotransporter (NCC) without hypertension in kidney deficient in a regulatory subunit of Na,K-ATPase, FXYD2.

  • Elena Arystarkhova‎ et al.
  • Physiological reports‎
  • 2014‎

Na,K-ATPase generates the driving force for sodium reabsorption in the kidney. Na,K-ATPase functional properties are regulated by small proteins belonging to the FXYD family. In kidney FXYD2 is the most abundant: it is an inhibitory subunit expressed in almost every nephron segment. Its absence should increase sodium pump activity and promote Na(+) retention, however, no obvious renal phenotype was detected in mice with global deletion of FXYD2 (Arystarkhova et al. 2013). Here, increased total cortical Na,K-ATPase activity was documented in the Fxyd2(-/-) mouse, without increased α1β1 subunit expression. We tested the hypothesis that adaptations occur in distal convoluted tubule (DCT), a major site of sodium adjustments. Na,K-ATPase immunoreactivity in DCT was unchanged, and there was no DCT hypoplasia. There was a marked activation of thiazide-sensitive sodium chloride cotransporter (NCC; Slc12a3) in DCT, predicted to increase Na(+) reabsorption in this segment. Specifically, NCC total increased 30% and NCC phosphorylated at T53 and S71, associated with activation, increased 4-6 fold. The phosphorylation of the closely related thick ascending limb (TAL) apical NKCC2 (Slc12a1) increased at least twofold. Abundance of the total and cleaved (activated) forms of ENaC α-subunit was not different between genotypes. Nonetheless, no elevation of blood pressure was evident despite the fact that NCC and NKCC2 are in states permissive for Na(+) retention. Activation of NCC and NKCC2 may reflect an intracellular linkage to elevated Na,K-ATPase activity or a compensatory response to Na(+) loss proximal to the TAL and DCT.


Treatment effects of Shilajit on aspirin-induced gastric lesions in rats.

  • Naghmeh Ghasemkhani‎ et al.
  • Physiological reports‎
  • 2021‎

The present study investigated the effects of Shilajit extract on aspirin-induced gastric lesions in rats. We evaluated macroscopic and histopathological lesions in the stomach, measured the activity of oxidative stress enzymes in gastric tissue homogenates, and assessed serum electrolytes and parameters of kidney and liver function. Forty-five male rats were allocated to five groups: Normal control, positive control, omeprazole treatment, Shilajit treatment, and Shilajit control. The treatment period lasted for four consecutive days. The size and number of gastric lesions were significantly reduced in the Shilajit and omeprazole groups compared to the positive control group, indicating a reduction in mucosal damage and the severity of edema and leukocyte infiltration in tissue sections. A significant increase was observed in the levels of all oxidative stress parameters, except malondialdehyde, in rats treated with Shilajit and omeprazole compared to those in the positive control group. The effect of the aqueous extract of Shilajit was comparable to that of omeprazole. These results indicated the protective effects of Shilajit against aspirin-induced gastric lesions.


The serine-threonine kinase PIM3 is an aldosterone-regulated protein in the distal nephron.

  • Alessia Spirli‎ et al.
  • Physiological reports‎
  • 2019‎

The mineralocorticoid hormone aldosterone plays a crucial role in the control of Na+ and K+ balance, blood volume, and arterial blood pressure, by acting in the aldosterone-sensitive distal nephron (ASDN) and stimulating a complex transcriptional, translational, and cellular program. Because the complexity of the aldosterone response is still not fully appreciated, we aimed at identifying new elements in this pathway. Here, we demonstrate that the expression of the proto-oncogene PIM3 (Proviral Integration Site of Moloney Murine Leukemia Virus 3), a serine/threonine kinase belonging to the calcium/calmodulin-regulated group of kinases, is stimulated by aldosterone in vitro (mCCDcl1 cells), ex vivo (mouse kidney slices), and in vivo in mice. Characterizing a germline Pim3-/- mouse model, we found that these mice have an upregulated Renin-Angiotensin-Aldosterone System (RAAS), with high circulating aldosterone and plasma renin activity levels on both standard or Na+ -deficient diet. Surprisingly, we did not observe any obvious salt-losing phenotype in Pim3 KO mice as shown by normal blood pressure, plasma and urinary electrolytes, as well as unchanged expression levels of the major Na+ transport proteins. These observations suggest that the potential effects of the loss of the Pim3 gene are physiologically compensated. Indeed, the 2 other family members of the PIM kinase family, PIM1 and PIM2 are upregulated in the kidney of Pim3-/- mice, and may therefore be involved in such compensation. In conclusion, our data demonstrate that the PIM3 kinase is a novel aldosterone-induced protein, but its precise role in aldosterone-dependent renal homeostasis remains to be determined.


FGFR regulator Memo1 is dispensable for FGF23 expression by osteoblasts during folic acid-driven kidney injury.

  • Katalin Bartos‎ et al.
  • Physiological reports‎
  • 2023‎

Loss of the mediator Of cell motility 1 (Memo1) in mice caused kidney disease and a bone disease with diminished osteoblast and osteoclast biomarkers in serum, resembling alterations occurring in adynamic bone disease in humans with chronic kidney disease or in Klotho-deficient mice. Here, we investigated whether Memo1 expression in osteoblasts is required for normal bone structure and FGF23 expression. We deleted Memo1 in the osteoblast-osteocyte lineage in Memo fl/fl mice using a Cre under Col1a1 promotor to obtain osteoblast-specific knockout (obKO) mice. We studied organs by micro-computed tomography, qPCR, and western blot. We challenged mice with folic acid for acute kidney injury (AKI) and analyzed organs. Memo obKO were viable without changes in gross anatomy, serum electrolytes, or circulating FGF23 concentrations compared to controls. Memo1 expression was blunted in bones of Memo obKO, whereas it remained unchanged in other organs. Micro-CT revealed no differences between genotypes in bone structure of vertebrae, femur, and tibia. During AKI, Fgf23 expression in calvaria, and renal transcriptional changes were comparable between genotypes. However, renal injury marker expression, circulating FGF23, and parathyroid hormone revealed a sex difference with more severely affected females than males of either genotype. The present data imply that Memo1 in osteoblasts is dispensable for bone structure and expression of Fgf23. Moreover, we found evidence of potential sex differences in murine folic acid nephropathy similar to other experimental models of renal injury that are important to consider when using this experimental model of renal injury.


Probenecid slows disease progression in a murine model of autosomal dominant polycystic kidney disease.

  • Sergey N Arkhipov‎ et al.
  • Physiological reports‎
  • 2023‎

Development of autosomal dominant polycystic kidney disease (ADPKD) involves renal epithelial cell abnormalities. Cystic fluid contains a high level of ATP that, among other effects, leads to a reduced reabsorption of electrolytes in cyst-lining cells, and thus results in cystic fluid accumulation. Earlier, we demonstrated that Pkd1RC/RC mice, a hypomorphic model of ADPKD, exhibit increased expression of pannexin-1, a membrane channel capable of ATP release. In the current study, we found that human ADPKD cystic epithelia have higher pannexin-1 abundance than normal collecting ducts. We hypothesized that inhibition of pannexin-1 function with probenecid can be used to attenuate ADPKD development. Renal function in male and female Pkd1RC/RC and control mice was monitored between 9 and 20 months of age. To test the therapeutic effects of probenecid (a uricosuric agent and a pannexin-1 blocker), osmotic minipumps were implanted in male and female Pkd1RC/RC mice, and probenecid or vehicle was administered for 42 days until 1 year of age. Probenecid treatment improved glomerular filtration rates and slowed renal cyst formation in male mice (as shown in histopathology). The mechanistic effects of probenecid on sodium reabsorption and fluid transport were tested on polarized mpkCCDcl4 cells subjected to short-circuit current measurements, and in 3D cysts grown in Matrigel. In the mpkCCDcl4 epithelial cell line, probenecid elicited higher ENaC currents and attenuated in vitro cyst formation, indicating lower sodium and less fluid retention in the cysts. Our studies open new avenues of research into targeting pannexin-1 in ADPKD pathology.


Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium.

  • Anne Hahn‎ et al.
  • Physiological reports‎
  • 2017‎

Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca2+- dependent and cAMP- dependent Cl- secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca2+-gated Cl- channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, the epithelial Na+ channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl- secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl- secretion and Na+ absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca2+-dependent Cl- secretion in this tissue. These characteristic features of Cl--dependent secretion reveal similarities and distinct differences to secretory processes in human airways.


Angiotensin II is required to induce exaggerated salt sensitivity in Dahl rats exposed to maternal separation.

  • Analia S Loria‎ et al.
  • Physiological reports‎
  • 2015‎

We previously reported that maternal separation, rat model of early life stress, enhances pressor responses to acute and chronic stressors. The aims of this study were to determine whether Dahl salt-sensitive (DS) rats subjected to maternal separation (MatSep-DS) as compared to normally reared DS (Ctl-DS) rats show exaggerated blood pressure responses to acute behavioral stressors, such as restraint stress or air jet stress (AJS), or, hypertensive stimuli including chronic high-salt diet (4% NaCl) and angiotensin II (AngII) infusion (200 ng/Kg/min) during 1 week. MatSep was performed in male DS rats for 3 h/day from postnatal days 2-14. At 8 weeks of age, rats were implanted with telemetry transmitters and allowed to recover. Mean arterial pressure (MAP) was not different between MatSep-DS and Ctl-DS rats at baseline (120 ± 2 mmHg vs. 118 ± 1 mmHg, n = 4-8). Blood pressure responses during AJS and restraint stress were not different between MatSep-DS and Ctl-DS at 3 min. However, blood pressure recovery from AJS was significantly impaired in MatSep-DS rats compared to Ctl-DS rats (P < 0.05). 3-h stress-induced similar responses in MatSep and Ctl-DS rats. Chronic blood pressure responses to AngII infusion in rats fed a high-salt diet displayed enhanced MAP in MatSep-DS when compared with Ctl-DS rats (167 ± 5 mmHg vs. 152 ± 2 mmHg, pinteraction <0.05). However, MAP increased similarly in both groups in response to AngII infusion or high-salt diet separately. Renal parameters such as proteinuria, urine flow rate, and urine electrolytes were not different between groups in response to each treatment. In summary, salt sensitivity induces exaggerated blood pressor responses only in presence of AngII due to early life stress.


Salt and water balance after sweat loss: A study of Bikram yoga.

  • Hasan Alrefai‎ et al.
  • Physiological reports‎
  • 2020‎

Bikram yoga is practiced in a room heated to 105°F with 40% humidity for 90 min. During the class a large volume of water and electrolytes are lost in the sweat, specifically, sodium is lost, the main cation of the extracellular fluid. There is little known about the volume of sweat and the amount of sodium lost in sweat during Bikram yoga or the optimum quantity of fluid required to replace these losses. The participants who took part in this small feasibility study were five females with a mean age of 47.4 ± 4.7 years and 2.6 ± 1.6 years of experience at Bikram yoga. The total body weight, water consumed, serum sodium concentration, serum osmolality, and serum aldosterone levels were all measured before and after a Bikram yoga practice. Sweat sodium chloride concentration and osmolality were measured at the end of the practice. The mean estimated sweat loss was 1.54 ± 0.65 L, while the amount of water consumed during Bikram yoga was 0.38 ± 0.22 L. Even though only 25% of the sweat loss was replenished with water intake during the Bikram yoga class, we did not observe a change in serum sodium levels or serum osmolality. The sweat contained 82 ± 16 mmol/L of sodium chloride for an estimated total of 6.8 ± 2.1 g of sodium chloride lost in the sweat. The serum aldosterone increased 3.5-fold from before to after Bikram yoga. There was a decrease in the extracellular body fluid compartment of 9.7%. Sweat loss in Bikram yoga predominately produced a volume depletion rather than the dehydration of body fluids. The sweating-stimulated rise in serum aldosterone levels will lead to increased sodium reabsorption from the kidney tubules and restore the extracellular fluid volume over the next 24 hr.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: