Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Brain Responses during the Anticipation of Dyspnea.

  • M Cornelia Stoeckel‎ et al.
  • Neural plasticity‎
  • 2016‎

Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.


Brain mechanisms of short-term habituation and sensitization toward dyspnea.

  • M Cornelia Stoeckel‎ et al.
  • Frontiers in psychology‎
  • 2015‎

Dyspnea is a prevalent and threatening cardinal symptom in many diseases including asthma. Whether patients suffering from dyspnea show habituation or sensitization toward repeated experiences of dyspnea is relevant for both quality of life and treatment success. Understanding the mechanisms, including the underlying brain activation patterns, that determine the dynamics of dyspnea perception seems crucial for the improvement of treatment and rehabilitation. Toward this aim, we investigated the interplay between short-term changes of dyspnea perception and changes of related brain activation. Healthy individuals underwent repeated blocks of resistive load induced dyspnea with parallel acquisition of functional magnetic resonance imaging data. Late vs. early ratings on dyspnea intensity and unpleasantness were correlated with late vs. early brain activation for both, dyspnea anticipation and dyspnea perception. Individual trait and state anxiety were determined using questionnaire data. Our results indicate an involvement of the orbitofrontal cortex (OFC), midbrain/periaqueductal gray (PAG) and anterior insular cortex in habituation/sensitization toward dyspnea. Changes in the anterior insular cortex were particularly linked to changes in dyspnea unpleasantness. Changes of both dyspnea intensity and unpleasantness were positively correlated with state and trait anxiety. Our findings are in line with the suggested relationship between the anterior insular cortex and dyspnea unpleasantness. They further support the notion that habituation/sensitization toward dyspnea is influenced by anxiety. Our study extends the known role of the midbrain/PAG in anti-nociception to an additional involvement in habituation/sensitization toward dyspnea and suggests an interplay with the OFC.


Brain Activation during Perception and Anticipation of Dyspnea in Chronic Obstructive Pulmonary Disease.

  • Roland W Esser‎ et al.
  • Frontiers in physiology‎
  • 2017‎

Background: Dyspnea is the impairing cardinal symptom in COPD, but the underlying brain mechanisms and their relationships to clinical patient characteristics are widely unknown. This study compared neural responses to the perception and anticipation of dyspnea between patients with stable moderate-to-severe COPD and healthy controls. Moreover, associations between COPD-specific brain activation and clinical patient characteristics were examined. Methods: During functional magnetic resonance imaging, dyspnea was induced in patients with stable moderate-to-severe COPD (n = 17) and healthy control subjects (n = 21) by resistive-loaded breathing. Blocks of severe and mild dyspnea were alternating, with each block being preceded by visually cued anticipation phases. Results: During the perception of increased dyspnea, both patients and controls showed comparable brain activation in common dyspnea-relevant sensorimotor and cortico-limbic brain regions. During the anticipation of increased dyspnea, patients showed higher activation in hippocampus and amygdala than controls which was significantly correlated with reduced exercise capacity, reduced health-related quality of life, and higher levels of dyspnea and anxiety. Conclusions: This study suggests that patients with stable moderate-to-severe COPD show higher activation in emotion-related brain areas than healthy controls during the anticipation, but not during the actual perception of experimentally induced dyspnea. These brain activations were related to important clinical characteristics and might contribute to an unfavorable course of the disease via maladaptive psychological and behavioral mechanisms.


Structural brain changes related to disease duration in patients with asthma.

  • Andreas von Leupoldt‎ et al.
  • PloS one‎
  • 2011‎

Dyspnea is the impairing, cardinal symptom patients with asthma repeatedly experience over the course of the disease. However, its accurate perception is also crucial for timely initiation of treatment. Reduced perception of dyspnea is associated with negative treatment outcome, but the underlying brain mechanisms of perceived dyspnea in patients with asthma remain poorly understood. We examined whether increasing disease duration in fourteen patients with mild-to-moderate asthma is related to structural brain changes in the insular cortex and brainstem periaqueductal grey (PAG). In addition, the association between structural brain changes and perceived dyspnea were studied. By using magnetic resonance imaging in combination with voxel-based morphometry, gray matter volumes of the insular cortex and the PAG were analysed and correlated with asthma duration and perceived affective unpleasantness of resistive load induced dyspnea. Whereas no associations were observed for the insular cortex, longer duration of asthma was associated with increased gray matter volume in the PAG. Moreover, increased PAG gray matter volume was related to reduced ratings of dyspnea unpleasantness. Our results demonstrate that increasing disease duration is associated with increased gray matter volume in the brainstem PAG in patients with mild-to-moderate asthma. This structural brain change might contribute to the reduced perception of dyspnea in some patients with asthma and negatively impact the treatment outcome.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: