2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 368 papers

Defining Dysbiosis in Patients with Urolithiasis.

  • Anna Zampini‎ et al.
  • Scientific reports‎
  • 2019‎

The prevalence of urinary stone disease (USD) is rapidly rising. However, the factors driving this increase are unknown. Recent microbiome studies suggest that dysbiosis may in part contribute to the increasing prevalence. The objective of the current study was to determine the nature and location of dysbiosis associated with USD. We conducted microbiome analysis from the gastrointestinal and urinary tracts, along with a metabolomic analysis of the urinary metabolome, from subjects with an active episode of USD or no history of the disease. Higher rates of antibiotic use among USD patients along with integrated microbiome and metabolomic results support the hypothesis that USD is associated with an antibiotic-driven shift in the microbiome from one that protects against USD to one that promotes the disease. Specifically, our study implicates urinary tract Lactobacillus and Enterobacteriaceae in protective and pathogenic roles for USD, respectively, which conventional, culture-based methods of bacterial analysis from urine and kidney stones would not necessarily detect. Results suggest that antibiotics produce a long-term shift in the microbiome that may increase the risk for USD, with the urinary tract microbiome holding more relevance for USD than the gut microbiome.


Dysbiosis of the microbiome in gastric carcinogenesis.

  • Natalia Castaño-Rodríguez‎ et al.
  • Scientific reports‎
  • 2017‎

The gastric microbiome has been proposed as an etiological factor in gastric carcinogenesis. We compared the gastric microbiota in subjects presenting with gastric cancer (GC, n = 12) and controls (functional dyspepsia (FD), n = 20) from a high GC risk population in Singapore and Malaysia. cDNA from 16S rRNA transcripts were amplified (515F-806R) and sequenced using Illumina MiSeq 2 × 250 bp chemistry. Increased richness and phylogenetic diversity but not Shannon's diversity was found in GC as compared to controls. nMDS clustered GC and FD subjects separately, with PERMANOVA confirming a significant difference between the groups. H. pylori serological status had a significant impact on gastric microbiome α-diversity and composition. Several bacterial taxa were enriched in GC, including Lactococcus, Veilonella, and Fusobacteriaceae (Fusobacterium and Leptotrichia). Prediction of bacterial metabolic contribution indicated that serological status had a significant impact on metabolic function, while carbohydrate digestion and pathways were enriched in GC. Our findings highlight three mechanisms of interest in GC, including enrichment of pro-inflammatory oral bacterial species, increased abundance of lactic acid producing bacteria, and enrichment of short chain fatty acid production pathways.


Conjunctival dysbiosis in mucosa-associated lymphoid tissue lymphoma.

  • Kazunobu Asao‎ et al.
  • Scientific reports‎
  • 2019‎

To investigate the conjunctival microbiota and the association between the development of conjunctival mucosa-associated lymphoid tissue (MALT) lymphoma and dysbiosis, DNA samples were collected from 25 conjunctival MALT lymphoma patients and 25 healthy controls. To compare the microbiota, samples were collected from the following four body locations: conjunctiva, meibomian gland, periocular skin and hand. Extracted DNA was analyzed by 16S rRNA sequences, and libraries were sequenced on an Illumina MiSeq sequencer. The differences in bacteria were characterized by using principal coordinate analysis of metagenomics data, and the differences in bacterial compositions were evaluated by linear discriminant analysis effect size. The conjunctival microbiota of MALT lymphoma patients was compositionally different from that of healthy controls. For the conjunctival MALT lymphoma patients, alterations in the microbial composition were detected, and a remarkable change was detected at the conjunctiva. Detailed analysis showed that a specific population of the microbiota, the genus Delftia, was significantly more abundant in conjunctival MALT lymphoma patients, and the genera Bacteroides and Clostridium were less abundant in the MALT lymphoma patients. A specific microbiota on the ocular surface in conjunctival MALT lymphoma patients was detected, and dysbiosis may play an important role in the pathophysiology of conjunctival MALT lymphoma.


Defining Dysbiosis for a Cluster of Chronic Diseases.

  • Lamont J Wilkins‎ et al.
  • Scientific reports‎
  • 2019‎

The prevalence of many chronic diseases has increased over the last decades. It has been postulated that dysbiosis driven by environmental factors such as antibiotic use is shifting the microbiome in ways that increase inflammation and the onset of chronic disease. Dysbiosis can be defined through the loss or gain of bacteria that either promote health or disease, respectively. Here we use multiple independent datasets to determine the nature of dysbiosis for a cluster of chronic diseases that includes urinary stone disease (USD), obesity, diabetes, cardiovascular disease, and kidney disease, which often exist as co-morbidities. For all disease states, individuals exhibited a statistically significant association with antibiotics in the last year compared to healthy counterparts. There was also a statistically significant association between antibiotic use and gut microbiota composition. Furthermore, each disease state was associated with a loss of microbial diversity in the gut. Three genera, Bacteroides, Prevotella, and Ruminococcus, were the most common dysbiotic taxa in terms of being enriched or depleted in disease populations and was driven in part by the diversity of operational taxonomic units (OTUs) within these genera. Results of the cross-sectional analysis suggest that antibiotic-driven loss of microbial diversity may increase the risk for chronic disease. However, longitudinal studies are needed to confirm the causative effect of diversity loss for chronic disease risk.


Estimation of silent phenotypes of calf antibiotic dysbiosis.

  • Shunnosuke Okada‎ et al.
  • Scientific reports‎
  • 2023‎

Reducing antibiotic usage among livestock animals to prevent antimicrobial resistance has become an urgent issue worldwide. This study evaluated the effects of administering chlortetracycline (CTC), a versatile antibacterial agent, on the performance, blood components, fecal microbiota, and organic acid concentrations of calves. Japanese Black calves were fed with milk replacers containing CTC at 10 g/kg (CON group) or 0 g/kg (EXP group). Growth performance was not affected by CTC administration. However, CTC administration altered the correlation between fecal organic acids and bacterial genera. Machine learning (ML) methods such as association analysis, linear discriminant analysis, and energy landscape analysis revealed that CTC administration affected populations of various types of fecal bacteria. Interestingly, the abundance of several methane-producing bacteria at 60 days of age was high in the CON group, and the abundance of Lachnospiraceae, a butyrate-producing bacterium, was high in the EXP group. Furthermore, statistical causal inference based on ML data estimated that CTC treatment affected the entire intestinal environment, potentially suppressing butyrate production, which may be attributed to methanogens in feces. Thus, these observations highlight the multiple harmful impacts of antibiotics on the intestinal health of calves and the potential production of greenhouse gases by calves.


Plasmodium berghei ANKA causes intestinal malaria associated with dysbiosis.

  • Tomoyo Taniguchi‎ et al.
  • Scientific reports‎
  • 2015‎

Gastrointestinal symptoms, such as abdominal pain and diarrhea, are frequently observed in patients with Plasmodium falciparum malaria. However, the correlation between malaria intestinal pathology and intestinal microbiota has not been investigated. In the present study, infection of C57BL/6 mice with P. berghei ANKA (PbA) caused intestinal pathological changes, such as detachment of epithelia in the small intestines and increased intestinal permeability, which correlated with development with experimental cerebral malaria (ECM). Notably, an apparent dysbiosis occurred, characterized by a reduction of Firmicutes and an increase in Proteobacteria. Furthermore, some genera of microbiota correlated with parasite growth and/or ECM development. By contrast, BALB/c mice are resistant to ECM and exhibit milder intestinal pathology and dysbiosis. These results indicate that the severity of cerebral and intestinal pathology coincides with the degree of alteration in microbiota. This is the first report demonstrating that malaria affects intestinal microbiota and causes dysbiosis.


Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas.

  • Yingying Lu‎ et al.
  • Scientific reports‎
  • 2016‎

Recent reports have suggested that the gut microbiota is involved in the progression of colorectal cancer (CRC). The composition of gut microbiota in CRC precursors has not been adequately described. To characterize the structure of adherent microbiota in this disease, we conducted pyrosequencing-based analysis of 16S rRNA genes to determine the bacterial profile of normal colons (healthy controls) and colorectal adenomas (CRC precursors). Adenoma mucosal biopsy samples and adjacent normal colonic mucosa from 31 patients with adenomas and 20 healthy volunteers were profiled using the Illumina MiSeq platform. Principal coordinate analysis (PCoA) showed structural segregation between colorectal adenomatous tissue and control tissue. Alpha diversity estimations revealed higher microbiota diversity in samples from patients with adenomas. Taxonomic analysis illustrated that abundance of eight phyla (Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, Cyanobacteria, Candidate-division TM7, and Tenericutes) was significantly different. In addition, Lactococcus and Pseudomonas were enriched in preneoplastic tissue, whereas Enterococcus, Bacillus, and Solibacillus were reduced. However, both PCoA and cluster tree analyses showed similar microbiota structure between adenomatous and adjacent non-adenoma tissues. These present findings provide preliminary experimental evidence supporting that colorectal preneoplastic lesion may be the most important factor leading to alterations in bacterial community composition.


Gut dysbiosis in Thai intrahepatic cholangiocarcinoma and hepatocellular carcinoma.

  • Yotsawat Pomyen‎ et al.
  • Scientific reports‎
  • 2023‎

Primary liver cancer (PLC), which includes intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC), has the highest incidence of all cancer types in Thailand. Known etiological factors, such as viral hepatitis and chronic liver disease do not fully account for the country's unusually high incidence. However, the gut-liver axis, which contributes to carcinogenesis and disease progression, is influenced by the gut microbiome. To investigate this relationship, fecal matter from 44 Thai PLC patients and 76 healthy controls were subjected to whole-genome metagenomic shotgun sequencing and then analyzed by marker gene-based and assembly based methods. Results revealed greater gut microbiome heterogeneity in iCCA compared to HCC and healthy controls. Two Veillonella species were found to be more abundant in iCCA samples and could distinguish iCCA from HCC and healthy controls. Conversely, Ruminococcus gnavus was depleted in iCCA patients and could distinguish HCC from iCCA samples. High Veillonella genus counts in the iCCA group were associated with enriched amino acid biosynthesis and glycolysis pathways, while enriched phospholipid and thiamine metabolism pathways characterized the HCC group with high Blautia genus counts. These findings reveal distinct landscapes of gut dysbiosis among Thai iCCA and HCC patients and warrant further investigation as potential biomarkers.


Gut dysbiosis is associated with acceleration of lupus nephritis.

  • Giancarlo R Valiente‎ et al.
  • Scientific reports‎
  • 2022‎

The gut microbiota (GM) exerts a strong influence over the host immune system and dysbiosis of this microbial community can affect the clinical phenotype in chronic inflammatory conditions. To explore the role of the GM in lupus nephritis, we colonized NZM2410 mice with Segmented Filamentous Bacteria (SFB). Gut colonization with SFB was associated with worsening glomerulonephritis, glomerular and tubular immune complex deposition and interstitial inflammation compared to NZM2410 mice free of SFB. With SFB colonization mice experienced an increase in small intestinal lamina propria Th17 cells and group 3 innate lymphoid cells (ILC3s). However, although serum IL-17A expression was elevated in these mice, Th17 cells and ILC3s were not detected in the inflammatory infiltrate in the kidney. In contrast, serum and kidney tissue expression of the macrophage chemoattractants MCP-1 and CXCL1 were significantly elevated in SFB colonized mice. Furthermore, kidney infiltrating F4/80+CD206+M2-like macrophages were significantly increased in these mice. Evidence of increased gut permeability or "leakiness" was also detected in SFB colonized mice. Finally, the intestinal microbiome of SFB colonized mice at 15 and 30 weeks of age exhibited dysbiosis when compared to uncolonized mice at the same time points. Both microbial relative abundance as well as biodiversity of colonized mice was found to be altered. Collectively, SFB gut colonization in the NZM2410 mouse exacerbates kidney disease, promotes kidney M2-like macrophage infiltration and overall intestinal microbiota dysbiosis.


Microbiota dysbiosis and its pathophysiological significance in bowel obstruction.

  • Shrilakshmi Hegde‎ et al.
  • Scientific reports‎
  • 2018‎

Bowel obstruction (OB) causes local and systemic dysfunctions. Here we investigated whether obstruction leads to alterations in microbiota community composition and total abundance, and if so whether these changes contribute to dysfunctions in OB. Partial colon obstruction was maintained in rats for 7 days. The mid colon and its intraluminal feces - proximal to the obstruction - were studied. OB did not cause bacterial overgrowth or mucosa inflammation, but induced profound changes in fecal microbiota composition and diversity. At the phylum level, the 16S rRNA sequencing showed a significant decrease in the relative abundance of Firmicutes with corresponding increases in Proteobacteria and Bacteroidetes in OB compared with sham controls. Daily treatment using broad spectrum antibiotics dramatically reduced total bacterial abundance, but increased the relative presence of Proteobacteria. Antibiotics eliminated viable bacteria in the spleen and liver, but not in the mesentery lymph node in OB. Although antibiotic treatment decreased muscle contractility in sham rats, it had little effect on OB-associated suppression of muscle contractility or inflammatory changes in the muscle layer. In conclusion, obstruction leads to marked dysbiosis in the colon. Antibiotic eradication of microbiota had limited effects on obstruction-associated changes in inflammation, motility, or bacterial translocation.


A distinct bacterial dysbiosis associated skin inflammation in ovine footrot.

  • Grazieli Maboni‎ et al.
  • Scientific reports‎
  • 2017‎

Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression.


Smoking-induced subgingival dysbiosis precedes clinical signs of periodontal disease.

  • Ryan Tamashiro‎ et al.
  • Scientific reports‎
  • 2023‎

Smoking accelerates periodontal disease and alters the subgingival microbiome. However, the relationship between smoking-associated subgingival dysbiosis and progression of periodontal disease is not well understood. Here, we sampled 233 subgingival sites longitudinally from 8 smokers and 9 non-smokers over 6-12 months, analyzing 804 subgingival plaque samples using 16 rRNA sequencing. At equal probing depths, the microbial richness and diversity of the subgingival microbiome was higher in smokers compared to non-smokers, but these differences decreased as probing depths increased. The overall subgingival microbiome of smokers differed significantly from non-smokers at equal probing depths, which was characterized by colonization of novel minority microbes and a shift in abundant members of the microbiome to resemble periodontally diseased communities enriched with pathogenic bacteria. Temporal analysis showed that microbiome in shallow sites were less stable than deeper sites, but temporal stability of the microbiome was not significantly affected by smoking status or scaling and root planing. We identified 7 taxa-Olsenella sp., Streptococcus cristatus, Streptococcus pneumoniae, Streptococcus parasanguinis, Prevotella sp., Alloprevotella sp., and a Bacteroidales sp. that were significantly associated with progression of periodontal disease. Taken together, these results suggest that subgingival dysbiosis in smokers precedes clinical signs of periodontal disease, and support the hypothesis that smoking accelerates subgingival dysbiosis to facilitate periodontal disease progression.


Hyperglycemia is associated with duodenal dysbiosis and altered duodenal microenvironment.

  • Aarti Darra‎ et al.
  • Scientific reports‎
  • 2023‎

The gut microbiome influences the pathogenesis and course of metabolic disorders such as diabetes. While it is likely that duodenal mucosa associated microbiota contributes to the genesis and progression of increased blood sugar, including the pre-diabetic stage, it is much less studied than stool. We investigated paired stool and duodenal microbiota in subjects with hyperglycemia (HbA1c ≥ 5.7% and fasting plasma glucose > 100 mg/dl) compared to normoglycemic. We found patients with hyperglycemia (n = 33) had higher duodenal bacterial count (p = 0.008), increased pathobionts and reduction in beneficial flora compared to normoglycemic (n = 21). The microenvironment of duodenum was assessed by measuring oxygen saturation using T-Stat, serum inflammatory markers and zonulin for gut permeability. We observed that bacterial overload was correlated with increased serum zonulin (p = 0.061) and higher TNF-α (p = 0.054). Moreover, reduced oxygen saturation (p = 0.021) and a systemic proinflammatory state [increased total leukocyte count (p = 0.031) and reduced IL-10 (p = 0.015)] characterized the duodenum of hyperglycemic. Unlike stool flora, the variability in duodenal bacterial profile was associated with glycemic status and was predicted by bioinformatic analysis to adversely affect nutrient metabolism. Our findings offer new understanding of the compositional changes in the small intestine bacteria by identifying duodenal dysbiosis and altered local metabolism as potentially early events in hyperglycemia.


Gut microbiota signature of pathogen-dependent dysbiosis in viral gastroenteritis.

  • Taketoshi Mizutani‎ et al.
  • Scientific reports‎
  • 2021‎

Acute gastroenteritis associated with diarrhea is considered a serious disease in Africa and South Asia. In this study, we examined the trends in the causative pathogens of diarrhea and the corresponding gut microbiota in Ghana using microbiome analysis performed on diarrheic stools via 16S rRNA sequencing. In total, 80 patients with diarrhea and 34 healthy adults as controls, from 2017 to 2018, were enrolled in the study. Among the patients with diarrhea, 39 were norovirus-positive and 18 were rotavirus-positive. The analysis of species richness (Chao1) was lower in patients with diarrhea than that in controls. Beta-diversity analysis revealed significant differences between the two groups. Several diarrhea-related pathogens (e.g., Escherichia-Shigella, Klebsiella and Campylobacter) were detected in patients with diarrhea. Furthermore, co-infection with these pathogens and enteroviruses (e.g., norovirus and rotavirus) was observed in several cases. Levels of both Erysipelotrichaceae and Staphylococcaceae family markedly differed between norovirus-positive and -negative diarrheic stools, and the 10 predicted metabolic pathways, including the carbohydrate metabolism pathway, showed significant differences between rotavirus-positive patients with diarrhea and controls. This comparative study of diarrheal pathogens in Ghana revealed specific trends in the gut microbiota signature associated with diarrhea and that pathogen-dependent dysbiosis occurred in viral gastroenteritis.


Microbiota dysbiosis and functional outcome in acute ischemic stroke patients.

  • Yoonkyung Chang‎ et al.
  • Scientific reports‎
  • 2021‎

Currently, few studies are reported on the composition of microbiota in stroke patients and the association with stroke prognosis. This study investigated the differing microbiota composition in stroke patients and confirmed the association of microbiota composition with poor functional outcome. Between January of 2018 and December of 2019, 198 patients with acute cerebral infarction were included in this study. For the case-control study, age and sex-matched normal healthy subjects (n = 200) were included when receiving their health screening examinations. We isolated bacterial extracellular membrane vesicles and extracted DNA from blood samples. Taxonomic assignments were performed by using the sequence reads of 16S rRNA genes following blood microbiota analysis. Statistical analysis was conducted appropriately by using Statistical Analysis System software. The mean age of the stroke patients were 63.7 ± 12.5 years, and the male sex was 58.5%. Of the total enrolled patients, poor functional outcome (modified Rankin Score ≥ 3) was noted in 19.7%. The principal component analysis of microbiota composition revealed significant differences between healthy control subjects and stroke patients. At the genus level, Aerococcaceae(f), ZB2(c), TM7-1(c), and Flavobacterium were significantly increased in stroke patients compared to the healthy controls, whereas Mucispirillum, rc4-4, Akkermansia, Clostridiales(o), Lactobacillus, and Stenotrophomonas were decreased considerably. For the functional outcome after ischemic stroke, Anaerococcus, Blautia, Dialister, Aerococcaceae(f), Propionibacterium, Microbacteriaceae(f), and Rothia were enriched in the group with good outcomes, whereas Ruminococcaceae(f) and Prevotella were enriched in the group with poor outcome. There was apparent dysbiosis of blood microbiota in patients with acute ischemic stroke compared to healthy people. Ruminococcaceae(f) and Prevotella were elevated in stroke patients with poor functional outcome.


Microbiota dysbiosis in odontogenic rhinosinusitis and its association with anaerobic bacteria.

  • Yen-Ting Lu‎ et al.
  • Scientific reports‎
  • 2022‎

Odontogenic rhinosinusitis is a subtype of rhinosinusitis associated with dental infection or dental procedures and has special bacteriologic features. Previous research on the bacteriologic features of odontogenic rhinosinusitis has mainly used culture-dependent methods. The variation of microbiota between odontogenic and nonodontogenic rhinosinusitis as well as the interplay between the involved bacteria have not been explored. Therefore, we enrolled eight odontogenic rhinosinusitis cases and twenty nonodontogenic rhinosinusitis cases to analyze bacterial microbiota through 16S rRNA sequencing. Significant differences were revealed by the Shannon diversity index (Wilcoxon test p = 0.0003) and PERMANOVA test based on weighted UniFrac distance (Wilcoxon test p = 0.001) between odontogenic and nonodontogenic samples. Anaerobic bacteria such as Porphyromonas, Fusobacterium, and Prevotella were significantly dominant in the odontogenic rhinosinusitis group. Remarkably, a correlation between different bacteria was also revealed by Pearson's correlation. Staphylococcus was highly positively associated with Corynebacterium, whereas Fusobacterium was highly negatively correlated with Prophyromonas. According to our results, the microbiota in odontogenic rhinosinusitis, predominantly anaerobic bacteria, was significantly different from that in nonodontogenic rhinosinusitis, and the interplay between specific bacteria may a major cause of this subtype of rhinosinusitis.


Axl alleviates DSS-induced colitis by preventing dysbiosis of gut microbiota.

  • Su-Min Yee‎ et al.
  • Scientific reports‎
  • 2023‎

Axl is a tyrosine kinase receptor, a negative regulator for innate immune responses and inflammatory bowel disease (IBD). The gut microbiota regulates intestinal immune homeostasis, but the role of Axl in the pathogenesis of IBD through the regulation of gut microbiota composition remains unresolved. In this study, mice with DSS-induced colitis showed increased Axl expression, which was almost entirely suppressed by depleting the gut microbiota with antibiotics. Axl-/- mice without DSS administration exhibited increased bacterial loads, especially the Proteobacteria abundant in patients with IBD, significantly consistent with DSS-induced colitis mice. Axl-/- mice also had an inflammatory intestinal microenvironment with reduced antimicrobial peptides and overexpression of inflammatory cytokines. The onset of DSS-induced colitis occurred faster with an abnormal expansion of Proteobacteria in Axl-/- mice than in WT mice. These findings suggest that a lack of Axl signaling exacerbates colitis by inducing aberrant compositions of the gut microbiota in conjunction with an inflammatory gut microenvironment. In conclusion, the data demonstrated that Axl signaling could ameliorate the pathogenesis of colitis by preventing dysbiosis of gut microbiota. Therefore, Axl may act as a potential novel biomarker for IBD and can be a potential candidate for the prophylactic or therapeutic target of diverse microbiota dysbiosis-related diseases.


Gut Dysbiosis with Minimal Enteritis Induced by High Temperature and Humidity.

  • Song Chen‎ et al.
  • Scientific reports‎
  • 2019‎

High temperature and humidity (HTH) can cause diarrhea owing to food and drinking water contamination. However, their direct effects on gut microbiota and gastrointestinal inflammation are unknown. This study aimed to investigate the effects of HTH and probiotics on the microbiome. Twenty-one male mice were randomly assigned to normal control (NC), HTH, and broad-spectrum probiotic-treated (PR) groups. HTH and PR groups were regularly housed at 30 ± 0.5 °C with humidity of 85-90% for eight consecutive weeks. A broad-spectrum probiotic was administrated to PR-group mice from day 50 to 56. Clinical signs were observed and gut microbiota were analyzed via 16 S rRNA-based functional metagenomics. Intestinal pathology and the expression of defensins and pro-inflammatory cytokines were also assessed. Mice in the HTH and PR groups gradually developed sticky or loose feces. The HTH group developed a distinct microbiota profile associated with augmented metabolism and human-like pathophysiologies upon suppression of environmental sensing. Pathological assays indicated minimal enteritis, increased bacterial translocation, and elevated intestinal pro-inflammatory cytokine levels. Thus, ambient HTH directly contributes to gut dysbiosis and minimal enteritis, whereas probiotics partially normalized the microbiota and ameliorated gut inflammation. This study provides novel insights into the pathogenesis of environment-associated diseases and offers a potential therapeutic approach.


Gut Dysbiosis and Neurobehavioral Alterations in Rats Exposed to Silver Nanoparticles.

  • Angela B Javurek‎ et al.
  • Scientific reports‎
  • 2017‎

Due to their antimicrobial properties, silver nanoparticles (AgNPs) are being used in non-edible and edible consumer products. It is not clear though if exposure to these chemicals can exert toxic effects on the host and gut microbiome. Conflicting studies have been reported on whether AgNPs result in gut dysbiosis and other changes within the host. We sought to examine whether exposure of Sprague-Dawley male rats for two weeks to different shapes of AgNPs, cube (AgNC) and sphere (AgNS) affects gut microbiota, select behaviors, and induces histopathological changes in the gastrointestinal system and brain. In the elevated plus maze (EPM), AgNS-exposed rats showed greater number of entries into closed arms and center compared to controls and those exposed to AgNC. AgNS and AgNC treated groups had select reductions in gut microbiota relative to controls. Clostridium spp., Bacteroides uniformis, Christensenellaceae, and Coprococcus eutactus were decreased in AgNC exposed group, whereas, Oscillospira spp., Dehalobacterium spp., Peptococcaeceae, Corynebacterium spp., Aggregatibacter pneumotropica were reduced in AgNS exposed group. Bacterial reductions correlated with select behavioral changes measured in the EPM. No significant histopathological changes were evident in the gastrointestinal system or brain. Findings suggest short-term exposure to AgNS or AgNC can lead to behavioral and gut microbiome changes.


Dysbiosis of the gut microbiome in elderly patients with hepatocellular carcinoma.

  • Weizheng Zhang‎ et al.
  • Scientific reports‎
  • 2023‎

Fecal samples from participants aged 60-80 were collected and sequenced by a high-throughput second-generation sequencer to explore the structural composition of gut microbiota in elderly patients with hepatocellular carcinoma(HCC). Comparison of gut microbiota between patients with hepatocellular carcinoma and healthy controls, α diversity and β diversity were statistically different. At the genus level, compared with the normal group, the abundance of A Blautia, Fusicatenibacter, Anaerostipes, Lachnospiraceae_ND3007_group, CAG-56, Eggerthella, Lachnospiraceae_FCS020_group and Olsenella were decreased significantly in the LC group. In contrast, the abundance of Escherichia-Shigella, Fusobacterium, Megasphaera, Veillonella, Tyzzerella_4, Prevotella_2 and Cronobacter increased significantly. The KEGG and COG pathway analyses showed that the dysbiosis of gut bacteria in primary liver carcinoma is associated with several pathways, including amino acid metabolism, replication and repair, nucleotide metabolism, cell motility, cell growth and death, and transcription. Age is negatively associated with the abundance of Bifidobacterium. Lachnospiraceae_ ND3007_ group, [Eubacterium]_hallii_group, Blautia, Fuscatenibacter and Anaerostipes are negatively correlated with ALT, AST and GGT levels (p < 0.05), respectively. Alpha-fetoprotein (AFP) is positively associated with the abundance of Erysipelatoclostridium, Magasphaera, Prevotella 2, Escherichia-Shigella, Streptococcus and [Eubacterium]_eligens_group (p < 0.05), respectively. A random forest model showed that the genera Eggerthella, Anaerostipes, and Lachnospiraceae_ ND3007_ group demonstrated the best predictive capacity. The area under the Receiver Operating Characteristic Curve of Eggerthella, Anaerostipes and Lachnospiraceae_ ND3007_ group are 0.791, 0.766 and 0.730, respectively. These data are derived from the first known gut microbiome study in elderly patients with hepatocellular carcinoma. Potentially, specific microbiota can be used as a characteristic index for screening, diagnosis, and prognosis of gut microbiota changes in elderly patients with hepatocellular carcinoma and even as a therapeutic clinical target.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: