Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Loss of the mitochondrial i-AAA protease YME1L leads to ocular dysfunction and spinal axonopathy.

  • Hans-Georg Sprenger‎ et al.
  • EMBO molecular medicine‎
  • 2019‎

Disturbances in the morphology and function of mitochondria cause neurological diseases, which can affect the central and peripheral nervous system. The i-AAA protease YME1L ensures mitochondrial proteostasis and regulates mitochondrial dynamics by processing of the dynamin-like GTPase OPA1. Mutations in YME1L cause a multi-systemic mitochondriopathy associated with neurological dysfunction and mitochondrial fragmentation but pathogenic mechanisms remained enigmatic. Here, we report on striking cell-type-specific defects in mice lacking YME1L in the nervous system. YME1L-deficient mice manifest ocular dysfunction with microphthalmia and cataracts and develop deficiencies in locomotor activity due to specific degeneration of spinal cord axons, which relay proprioceptive signals from the hind limbs to the cerebellum. Mitochondrial fragmentation occurs throughout the nervous system and does not correlate with the degenerative phenotype. Deletion of Oma1 restores tubular mitochondria but deteriorates axonal degeneration in the absence of YME1L, demonstrating that impaired mitochondrial proteostasis rather than mitochondrial fragmentation causes the observed neurological defects.


The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L.

  • Timothy Wai‎ et al.
  • EMBO reports‎
  • 2016‎

The SPFH (stomatin, prohibitin, flotillin, HflC/K) superfamily is composed of scaffold proteins that form ring-like structures and locally specify the protein-lipid composition in a variety of cellular membranes. Stomatin-like protein 2 (SLP2) is a member of this superfamily that localizes to the mitochondrial inner membrane (IM) where it acts as a membrane organizer. Here, we report that SLP2 anchors a large protease complex composed of the rhomboid protease PARL and the i-AAA protease YME1L, which we term the SPY complex (for SLP2-PARL-YME1L). Association with SLP2 in the SPY complex regulates PARL-mediated processing of PTEN-induced kinase PINK1 and the phosphatase PGAM5 in mitochondria. Moreover, SLP2 inhibits the stress-activated peptidase OMA1, which can bind to SLP2 and cleaves PGAM5 in depolarized mitochondria. SLP2 restricts OMA1-mediated processing of the dynamin-like GTPase OPA1 allowing stress-induced mitochondrial hyperfusion under starvation conditions. Together, our results reveal an important role of SLP2 membrane scaffolds for the spatial organization of IM proteases regulating mitochondrial dynamics, quality control, and cell survival.


Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria.

  • Anne Korwitz‎ et al.
  • The Journal of cell biology‎
  • 2016‎

Proteolytic cleavage of the dynamin-like guanosine triphosphatase OPA1 in mitochondria is emerging as a central regulatory hub that determines mitochondrial morphology under stress and in disease. Stress-induced OPA1 processing by OMA1 triggersmitochondrial fragmentation, which is associated with mitophagy and apoptosis in vitro. Here, we identify OMA1 as a critical regulator of neuronal survival in vivo and demonstrate that stress-induced OPA1 processing by OMA1 promotes neuronal death and neuroinflammatory responses. Using mice lacking prohibitin membrane scaffolds as a model of neurodegeneration, we demonstrate that additional ablation of Oma1 delays neuronal loss and prolongs lifespan. This is accompanied by the accumulation of fusion-active, long OPA1 forms, which stabilize the mitochondrial genome but do not preserve mitochondrial cristae or respiratory chain supercomplex assembly in prohibitin-depleted neurons. Thus, long OPA1 forms can promote neuronal survival independently of cristae shape, whereas stress-induced OMA1 activation and OPA1 cleavage limit mitochondrial fusion and promote neuronal death.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: