2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Complex signatures of natural selection at the Duffy blood group locus.

  • Martha T Hamblin‎ et al.
  • American journal of human genetics‎
  • 2002‎

The Duffy blood group locus (FY) has long been considered a likely target of natural selection, because of the extreme pattern of geographic differentiation of its three major alleles (FY*B, FY*A, and FY*O). In the present study, we resequenced the FY region in samples of Hausa from Cameroon (fixed for FY*O), Han Chinese (fixed for FY*A), Italians, and Pakistanis. Our goals were to characterize the signature of directional selection on FY*O in sub-Saharan Africa and to understand the extent to which natural selection has also played a role in the extreme geographic differentiation of the other derived allele at this locus, FY*A. The data from the FY region are compared with the patterns of variation observed at 10 unlinked, putatively neutral loci from the same populations, as well as with theoretical expectations from the neutral-equilibrium model. The FY region in the Hausa shows evidence of directional selection in two independent properties of the data (i.e., level of sequence variation and frequency spectrum), observations that are consistent with the FY*O mutation being the target. The Italian and Chinese FY data show patterns of variation that are very unusual, particularly with regard to frequency spectrum and linkage disequilibrium, but do not fit the predictions of any simple model of selection. These patterns may represent a more complex and previously unrecognized signature of positive selection.


Association of duffy blood group gene polymorphisms with IL8 gene in chronic periodontitis.

  • Emília Ângela Sippert‎ et al.
  • PloS one‎
  • 2013‎

The antigens of the Duffy blood group system (DARC) act as a receptor for the interleukin IL-8. IL-8 plays an important role in the pathogenesis of chronic periodontitis due to its chemotactic properties on neutrophils. The aim of this study was to investigate a possible association of Duffy blood group gene polymorphisms with the -353T>A, -845T>C and -738T>A SNPs of the IL8 gene in chronic periodontitis. One hundred and twenty-four individuals with chronic periodontitis and 187 controls were enrolled. DNA was extracted using the salting-out method. The Duffy genotypes and IL8 gene promoter polymorphisms were investigated by PCR-RFLP. Statistical analyses were conducted using the Chi square test with Yates correction or Fisher's Exact Test, and the possibility of associations were evaluated by odds ratio with a 95% confidence interval. When analyzed separately, for the Duffy blood group system, differences in the genotype and allele frequencies were not observed between all the groups analyzed; and, in nonsmokers, the -845C allele (3.6% vs. 0.4%), -845TC genotype (7.3% vs. 0.7%) and the CTA haplotype (3.6% vs. 0.4%) were positively associated with chronic periodontitis. For the first time to our knowledge, the polymorphisms of erythroid DARC plus IL8 -353T>A SNPs were associated with chronic periodontitis in Brazilian individuals. In Afro-Brazilians patients, the FY*02N.01 with IL8 -353A SNP was associated with protection to chronic periodontitis.


Chapter 9 the duffy antigen receptor for chemokines.

  • Antal Rot‎ et al.
  • Methods in enzymology‎
  • 2009‎

The Duffy blood group antigen is a serpentine protein with seven transmembrane domains that is not coupled to G-proteins or other known intracellular effectors. In addition to erythrocytes, it is also expressed in endothelial cells and neurons. In recent years the Duffy antigen has received much attention because of its diverse roles in health and disease. These include its functions as a docking receptor for the invasion of human erythrocytes by the malaria parasite Plasmodium vivax. In addition, the Duffy antigen is a binding protein for multiple inflammatory chemokines. Its expression allows erythrocytes to regulate intravascular levels of chemokines. It has also been shown recently that the Duffy antigen plays an important role in endothelial cells by facilitating chemokine transcytosis and presentation. Given these diverse functions of the Duffy antigen, this short review presents detailed methods that can be used to investigate each of these potential roles of this multifaceted protein.


Plasmodium vivax GPI-anchored micronemal antigen (PvGAMA) binds human erythrocytes independent of Duffy antigen status.

  • Yang Cheng‎ et al.
  • Scientific reports‎
  • 2016‎

Plasmodium vivax, a major agent of malaria in both temperate and tropical climates, has been thought to be unable to infect humans lacking the Duffy (Fy) blood group antigen because this receptor is critical for erythrocyte invasion. Recent surveys in various endemic regions, however, have reported P. vivax infections in Duffy-negative individuals, suggesting that the parasite may utilize alternative receptor-ligand pairs to complete the erythrocyte invasion. Here, we identified and characterized a novel parasite ligand, Plasmodium vivax GPI-anchored micronemal antigen (PvGAMA), that bound human erythrocytes regardless of Duffy antigen status. PvGAMA was localized at the microneme in the mature schizont-stage parasites. The antibodies against PvGAMA fragments inhibited PvGAMA binding to erythrocytes in a dose-dependent manner. The erythrocyte-specific binding activities of PvGAMA were significantly reduced by chymotrypsin treatment. Thus, PvGAMA may be an adhesion molecule for the invasion of Duffy-positive and -negative human erythrocytes.


Determination of the molecular basis for a limited dimorphism, N417K, in the Plasmodium vivax Duffy-binding protein.

  • Amy M McHenry‎ et al.
  • PloS one‎
  • 2011‎

Invasion of human red blood cells by Plasmodium merozoites is vital for replication and survival of the parasite and, as such, is an attractive target for therapeutic intervention. Merozoite invasion is mediated by specific interactions between parasite ligands and host erythrocyte receptors. The P. vivax Duffy-binding protein (PvDBP) is heavily dependent on the interaction with the human Duffy blood group antigen/receptor for chemokines (DARC) for invasion. Region II of PvDBP contains many allelic polymorphisms likely to have arisen by host immune selection. Successful vaccine development necessitates a deeper understanding of the role of these polymorphisms in both parasite function and evasion of host immunity. A 3D structure of the homologous P. knowlesi DBP predicts that most variant residues are surface-exposed, including N417K, which is a dimorphic residue change that has previously been shown to be part of a linked haplotype that alters DBP sensitivity to inhibitory antibody. In natural isolates only two residues are found at this site, asparagine (N) and lysine (K). Site-directed mutagenesis of residue 417 was used to create a panel of 20 amino acid variants that were then examined for their binding phenotype and response to immune sera. Our results suggest that the observed dimorphism likely arose due to both structural requirements and immune selection pressure. To our knowledge, this is the first exhaustive examination of this kind of the role of a single amino acid residue in antigenic character and binding ability. Our results demonstrate that a single amino acid substitution can dramatically alter both the ability of the PvDBP to bind to human erythrocytes and its antigenic character.


Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains.

  • Didier Menard‎ et al.
  • PLoS neglected tropical diseases‎
  • 2013‎

Plasmodium vivax is the most prevalent human malaria parasite, causing serious public health problems in malaria-endemic countries. Until recently the Duffy-negative blood group phenotype was considered to confer resistance to vivax malaria for most African ethnicities. We and others have reported that P. vivax strains in African countries from Madagascar to Mauritania display capacity to cause clinical vivax malaria in Duffy-negative people. New insights must now explain Duffy-independent P. vivax invasion of human erythrocytes.


Generation of 'designer erythroblasts' lacking one or more blood group systems from CRISPR/Cas9 gene-edited human-induced pluripotent stem cells.

  • Priyanka Pandey‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Despite the recent advancements in transfusion medicine, red blood cell (RBC) alloimmunization remains a challenge for multiparous women and chronically transfused patients. At times, diagnostic laboratories depend on difficult-to-procure rare reagent RBCs for the identification of different alloantibodies in such subjects. We have addressed this issue by developing erythroblasts with custom phenotypes (Rh null, GPB null and Kx null/Kell low) using CRISPR/Cas9 gene-editing of a human induced pluripotent stem cell (hiPSC) parent line (OT1-1) for the blood group system genes: RHAG, GYPB and XK. Guide RNAs were cloned into Cas9-puromycin expression vector and transfected into OT1-1. Genotyping was performed to select puromycin-resistant hiPSC KOs. CRISPR/Cas9 gene-editing resulted in the successful generation of three KO lines, RHAG KO, GYPB KO and XK KO. The OT1-1 cell line, as well as the three KO hiPSC lines, were differentiated into CD34+ CD41+ CD235ab+ hematopoietic progenitor cells (HPCs) and subsequently to erythroblasts. Native OT1-1 erythroblasts were positive for the expression of Rh, MNS, Kell and H blood group systems. Differentiation of RHAG KO, GYPB KO and XK KO resulted in the formation of Rh null, GPB null and Kx null/Kell low erythroblasts, respectively. OT1-1 as well as the three KO erythroblasts remained positive for RBC markers-CD71 and BAND3. Erythroblasts were mostly at the polychromatic/ orthochromatic stage of differentiation. Up to ~400-fold increase in erythroblasts derived from HPCs was observed. The availability of custom erythroblasts generated from CRISPR/Cas9 gene-edited hiPSC should be a useful addition to the tools currently used for the detection of clinically important red cell alloantibodies.


Enhancement of red blood cell transfusion compatibility using CRISPR-mediated erythroblast gene editing.

  • Joseph Hawksworth‎ et al.
  • EMBO molecular medicine‎
  • 2018‎

Regular blood transfusion is the cornerstone of care for patients with red blood cell (RBC) disorders such as thalassaemia or sickle-cell disease. With repeated transfusion, alloimmunisation often occurs due to incompatibility at the level of minor blood group antigens. We use CRISPR-mediated genome editing of an immortalised human erythroblast cell line (BEL-A) to generate multiple enucleation competent cell lines deficient in individual blood groups. Edits are combined to generate a single cell line deficient in multiple antigens responsible for the most common transfusion incompatibilities: ABO (Bombay phenotype), Rh (Rhnull), Kell (K0), Duffy (Fynull), GPB (S-s-U-). These cells can be differentiated to generate deformable reticulocytes, illustrating the capacity for coexistence of multiple rare blood group antigen null phenotypes. This study provides the first proof-of-principle demonstration of combinatorial CRISPR-mediated blood group gene editing to generate customisable or multi-compatible RBCs for diagnostic reagents or recipients with complicated matching requirements.


CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons.

  • J Hesselgesser‎ et al.
  • Current biology : CB‎
  • 1997‎

Chemokines are a family of proteins that chemoattract and activate immune cells by interacting with specific receptors on the surface of their targets. We have shown previously that chemokine receptors including the interleukin-8 receptor B (CXCR2) and the Duffy blood group antigen are expressed on subsets of neurons in various regions of the adult nervous system.


Red cell alloimmunization among antenatal women attending tertiary care center in Jamnagar, Gujarat, India.

  • Spruha Kashyap Dholakiya‎ et al.
  • Asian journal of transfusion science‎
  • 2021‎

The following study was conducted to measure the presence of alloantibodies of Rh and other blood group antigens produced due to fetomaternal hemorrhage in all antenatal women as well as those leading to hemolytic disease of fetus and newborn; presenting to a tertiary care center, G.G. Government Hospital, Jamnagar, Gujarat, India, between April 2014 and March 2016 (2 years).


K562 erythroleukemia line as a possible reticulocyte source to culture Plasmodium vivax and its surrogates.

  • Romy Kronstein-Wiedemann‎ et al.
  • Experimental hematology‎
  • 2020‎

Establishing an in vitro "red blood cell matrix" that would allow uninterrupted access to a stable, homogeneous reticulocyte population would facilitate the establishment of continuous, long-term in vitro Plasmodium vivax blood stage cultures. In this study, we have explored the suitability of the erythroleukemia K562 cell line as a continuous source of such reticulocytes and have investigated regulatory factors behind the terminal differentiation (and enucleation, in particular) of this cell line that can be used to drive the reticulocyte production process. The Duffy blood group antigen receptor (Fy), essential for P. vivax invasion, was stably introduced into K562 cells by lentiviral gene transfer. miRNA-26a-5p and miRNA-30a-5p were downregulated to promote erythroid differentiation and enucleation, resulting in a tenfold increase in the production of reticulocytes after stimulation with an induction cocktail compared with controls. Our results suggest an interplay in the mechanisms of action of miRNA-26a-5p and miRNA-30a-5p, which makes it necessary to downregulate both miRNAs to achieve a stable enucleation rate and Fy receptor expression. In the context of establishing P. vivax-permissive, stable, and reproducible reticulocytes, a higher enucleation rate may be desirable, which may be achieved by the targeting of further regulatory mechanisms in Fy-K562 cells; promoting the shift in hemoglobin production from fetal to adult may also be necessary. Despite the fact that K562 erythroleukemia cell lines are of neoplastic origin, this cell line offers a versatile model system to research the regulatory mechanisms underlying erythropoiesis.


Malaria was a weak selective force in ancient Europeans.

  • Pere Gelabert‎ et al.
  • Scientific reports‎
  • 2017‎

Malaria, caused by Plasmodium parasites, is thought to be one of the strongest selective forces that has shaped the genome of modern humans and was endemic in Europe until recent times. Due to its eradication around mid-twentieth century, the potential selective history of malaria in European populations is largely unknown. Here, we screen 224 ancient European genomes from the Upper Palaeolithic to the post-Roman period for 22 malaria-resistant alleles in twelve genes described in the literature. None of the most specific mutations for malaria resistance, like those at G6PD, HBB or Duffy blood group, have been detected among the available samples, while many other malaria-resistant alleles existed well before the advent of agriculture. We detected statistically significant differences between ancient and modern populations for the ATP2B4, FCGR2B and ABO genes and we found evidence of selection at IL-10 and ATP2B4 genes. However it is unclear whether malaria is the causative agent, because these genes are also involved in other immunological challenges. These results suggest that the selective force represented by malaria was relatively weak in Europe, a fact that could be associated to a recent historical introduction of the severe malaria pathogen.


Lymphatic precollectors contain a novel, specialized subpopulation of podoplanin low, CCL27-expressing lymphatic endothelial cells.

  • Nikolaus Wick‎ et al.
  • The American journal of pathology‎
  • 2008‎

Expression of the lymphoendothelial marker membrane mucoprotein podoplanin (podo) distinguishes endothelial cells of both blood and lymphatic lineages. We have previously discovered two distinct subpopulations of lymphatic endothelial cells (LECs) in human skin that were defined by their cell surface densities of podoplanin and were designated LEC podo-low and LEC podo-high. LEC podo-low is restricted to lymphatic precollector vessels that originate from initial LEC podo-high-containing lymphatic capillaries and selectively express several pro-inflammatory factors. In addition to the chemokine receptor protein Duffy blood group antigen receptor for chemokines, these factors include the constitutively expressed chemokine CCL27, which is responsible for the accumulation of pathogenic CCR10+ T lymphocytes in human inflammatory skin diseases. In this study, we report that CCR10+ T cells accumulate preferentially both around and within CCL27+ LEC podo-low precollector vessels in skin biopsies of human inflammatory disease. In transmigration assays, isolated CCR10+ T lymphocytes are chemotactically attracted by LEC podo-low in a CCL27-dependent fashion, but not by LEC podo-high. These observations indicate that LEC podo-low-containing precollector vessels constitute a specialized segment of the initial lymphatic microvasculature, and we hypothesize that these LEC podo-low-containing vessels are involved in the trafficking of CCR10+ T cells during skin inflammation.


Immunogenicity of the Plasmodium falciparum PfEMP1-VarO Adhesin: Induction of Surface-Reactive and Rosette-Disrupting Antibodies to VarO Infected Erythrocytes.

  • Micheline Guillotte‎ et al.
  • PloS one‎
  • 2015‎

Adhesion of Plasmodium falciparum-infected red blood cells (iRBC) to human erythrocytes (i.e. rosetting) is associated with severe malaria. Rosetting results from interactions between a subset of variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) adhesins and specific erythrocyte receptors. Interfering with such interactions is considered a promising intervention against severe malaria. To evaluate the feasibility of a vaccine strategy targetting rosetting, we have used here the Palo Alto 89F5 VarO rosetting model. PfEMP1-VarO consists of five Duffy-Binding Like domains (DBL1-5) and one Cysteine-rich Interdomain Region (CIDR1). The binding domain has been mapped to DBL1 and the ABO blood group was identified as the erythrocyte receptor. Here, we study the immunogenicity of all six recombinant PfEMP1-VarO domains and the DBL1- CIDR1 Head domain in BALB/c and outbred OF1 mice. Five readouts of antibody responses are explored: ELISA titres on the recombinant antigen, VarO-iRBC immunoblot reactivity, VarO-iRBC surface-reactivity, capacity to disrupt VarO rosettes and the capacity to prevent VarO rosette formation. For three domains, we explore influence of the expression system on antigenicity and immunogenicity. We show that correctly folded PfEMP1 domains elicit high antibody titres and induce a homogeneous response in outbred and BALB/c mice after three injections. High levels of rosette-disrupting and rosette-preventing antibodies are induced by DBL1 and the Head domain. Reduced-alkylated or denatured proteins fail to induce surface-reacting and rosette-disrupting antibodies, indicating that surface epitopes are conformational. We also report limited cross-reactivity between some PfEMP1 VarO domains. These results highlight the high immunogenicity of the individual domains in outbred animals and provide a strong basis for a rational vaccination strategy targeting rosetting.


In-depth phenotypic characterization of reticulocyte maturation using mass cytometry.

  • Richard Thomson-Luque‎ et al.
  • Blood cells, molecules & diseases‎
  • 2018‎

Progress towards an in-depth understanding of the final steps of the erythroid lineage development is paramount for many hematological diseases. We have characterized the final stages of reticulocyte maturation from bone marrow to peripheral blood using for the first time single-cell Mass Cytometry (CyTOF). We were able to measure the expression of 31 surface markers within a single red blood cell (RBC). We demonstrate the validity of CyTOF for RBC phenotyping by confirming the progressive reduction of transferrin receptor 1 (CD71) during reticulocyte maturation to mature RBC. We highlight the high-dimensional nature of mass cytometry data by correlating the expression of multiple proteins on individual RBCs. We further describe a more drastic reduction pattern for a component of the alpha4/beta1 integrin CD49d at the very early steps of reticulocyte maturation in bone marrow and directly linked with the mitochondria remnants clearance pattern. The enhanced and accurate RBC phenotyping potential of CyTOF described herein could be beneficial to decipher RBC preferences, as well as still not well understood receptor-ligand interaction of some hemotropic parasites such as the malaria causing agent Plasmodium vivax.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: