Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways.

  • Man Li‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2016‎

Facing the threat of highly variable virus infection, versatile vaccination systems are urgently needed. Intranasal mRNA vaccination provides a flexible and convenient approach. However, the nasal epithelium remains a major biological barrier to deliver antigens to nasal associated lymphoid tissue (NALT). To address this issue, a potent polymer-based intranasal mRNA vaccination system for HIV-1 treatment was synthesized using cationic cyclodextrin-polyethylenimine 2k conjugate (CP 2k) complexed with anionic mRNA encoding HIV gp120. The delivery vehicle containing CP 2k and mRNA overcame the epithelial barrier by reversibly opening the tight junctions, enhanced the paracellular delivery of mRNA and consequently minimized absorption of toxins in the nasal cavity. Together with the excellent intracellular delivery and prolonged nasal residence time, strong system and mucosal anti-HIV immune responses as well as cytokine productions were achieved with a balanced Th1/Th2/Th17 type. Our study provided the first proof of evidence that cationic polymers can be used as safe and potent intranasal mRNA vaccine carriers to overcome the nasal epithelial barrier. The safe and versatile polymeric delivery system represents a promising vaccination platform for infectious diseases.


Improved melanoma suppression with target-delivered TRAIL and Paclitaxel by a multifunctional nanocarrier.

  • Shiqi Huang‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2020‎

Malignant melanoma, a highly dangerous type of skin cancer, is usually resistant to pro-apoptosis agents such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) due to low death receptor expression levels. After verifying combination of chemotherapy drug paclitaxel (PTX) and TRAIL could significantly enhance their anti-melanoma effects, we developed a liposomal melanoma target-delivery system with tumor microenvironment responsiveness (TRAIL-[Lip-PTX]C18-TR) to co-deliver TRAIL and PTX. TRAIL is attached to negatively-charged liposome surface while PTX is encapsulated inside, with final surface modification of a stearyl chain (C18) fused pH-sensitive cell-penetrating peptide (TR). Here, C18-TR could specifically binds to melanoma-rich integrin receptors αvβ3 for melanoma targeting, help release TRAIL in low pH microenvironment by reversing the liposomal charge, and facilitate consequent liposome internalization. TRAIL-[Lip-PTX]C18-TR displayed significantly better in vitro half-maximal inhibitory concentration (IC50) than other formulations, and an in vivo tumor inhibition rate of 93.8%. Mechanistic study revealed that this synergistic effect is associated with the upregulation of death receptors DR4/5 by PTX. This co-delivery system significantly improved TRAIL-based therapy against melanoma, and provided a simple platform to co-deliver other drugs/agents for melanoma treatment.


Exosome-like nanoplatform modified with targeting ligand improves anti-cancer and anti-inflammation effects of imperialine.

  • Qing Lin‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2019‎

Currently, most anti-cancer therapies are still haunted by serious and deleterious adverse effects. Here, we report a highly biocompatible tumor cell-targeting delivery systems utilizing exosome-like vesicles (ELVs) that delivers a low-toxicity anti-cancer agent imperialine against non-small cell lung cancer (NSCLC). First, we introduced a novel micelle-aided method to efficiently load imperialine into intact ELVs. Then, integrin α3β1-binding octapeptide cNGQGEQc was modified onto ELV platform for tumor targeting as integrin α3β1 is overexpressed on NSCLC cells. This system not only significantly improved imperialine tumor accumulation and retention, but also had extremely low systemic toxicity both in vitro and in vivo. Our discoveries offer new ways to utilize ELV more efficiently for both drug loading and targeting. The solid pharmacokinetics improvement and extraordinary safety of this system also highlight possibilities of alternative long course cancer therapies using similar strategies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: