Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Comparison of chemical-induced temporomandibular osteoarthritis rat models (monosodium iodoacetate versus collagenase type II) for the study of prolonged drug delivery systems.

  • Florent Barry‎ et al.
  • PloS one‎
  • 2023‎

To compare two agents that can induce a rat model of temporomandibular joint osteoarthritis (TMJOA) by chemical induction: monosodium iodoacetate (MIA) and collagenase type 2 (Col-2). We wished to ascertain the best agent for assessing drug-delivery systems (DDSs).


Injectable Chitosan-Based Hydrogels for Trans-Cinnamaldehyde Delivery in the Treatment of Diabetic Foot Ulcer Infections.

  • Henry Chijcheapaza-Flores‎ et al.
  • Gels (Basel, Switzerland)‎
  • 2023‎

Diabetic foot ulcers (DFU) are among the most common complications in diabetic patients and affect 6.8% of people worldwide. Challenges in the management of this disease are decreased blood diffusion, sclerotic tissues, infection, and antibiotic resistance. Hydrogels are now being used as a new treatment option since they can be used for drug delivery and to improve wound healing. This project aims to combine the properties of hydrogels based on chitosan (CHT) and the polymer of β cyclodextrin (PCD) for local delivery of cinnamaldehyde (CN) in diabetic foot ulcers. This work consisted of the development and characterisation of the hydrogel, the evaluation of the CN release kinetics and cell viability (on a MC3T3 pre-osteoblast cell line), and the evaluation of the antimicrobial and antibiofilm activity (S. aureus and P. aeruginosa). The results demonstrated the successful development of a cytocompatible (ISO 10993-5) injectable hydrogel with antibacterial (99.99% bacterial reduction) and antibiofilm activity. Furthermore, a partial active molecule release and an increase in hydrogel elasticity were observed in the presence of CN. This leads us to hypothesise that a reaction between CHT and CN (a Schiff base) can occur and that CN could act as a physical crosslinker, thus improving the viscoelastic properties of the hydrogel and limiting CN release.


Efficacy of Intra-Articular Injection of Botulinum Toxin Type A (IncobotulinumtoxinA) in Temporomandibular Joint Osteoarthritis: A Three-Arm Controlled Trial in Rats.

  • Marie Béret‎ et al.
  • Toxins‎
  • 2023‎

Temporomandibular disorders (TMD) are complex pathologies responsible for chronic orofacial pain. Intramuscular injection of botulinum toxin A (BoNT/A) has shown effectiveness in knee and shoulder osteoarthritis, as well as in some TMDs such as masticatory myofascial pain, but its use remains controversial. This study aimed to evaluate the effect of intra-articular BoNT/A injection in an animal model of temporomandibular joint osteoarthritis. A rat model of temporomandibular osteoarthritis was used to compare the effects of intra-articular injection of BoNT/A, placebo (saline), and hyaluronic acid (HA). Efficacy was compared by pain assessment (head withdrawal test), histological analysis, and imaging performed in each group at different time points until day 30. Compared with the rats receiving placebo, those receiving intra-articular BoNT/A and HA had a significant decrease in pain at day 14. The analgesic effect of BoNT/A was evident as early as day 7, and lasted until day 21. Histological and radiographic analyses showed decrease in joint inflammation in the BoNT/A and HA groups. The osteoarthritis histological score at day 30 was significantly lower in the BoNT/A group than in the other two groups (p = 0.016). Intra-articular injection of BoNT/A appeared to reduce pain and inflammation in experimentally induced temporomandibular osteoarthritis in rats.


Evaluation of a Medical Grade Thermoplastic Polyurethane for the Manufacture of an Implantable Medical Device: The Impact of FDM 3D-Printing and Gamma Sterilization.

  • Marie-Stella M'Bengue‎ et al.
  • Pharmaceutics‎
  • 2023‎

Three-dimensional printing (3DP) of thermoplastic polyurethane (TPU) is gaining interest in the medical industry thanks to the combination of tunable properties that TPU exhibits and the possibilities that 3DP processes offer concerning precision, time, and cost of fabrication. We investigated the implementation of a medical grade TPU by fused deposition modelling (FDM) for the manufacturing of an implantable medical device from the raw pellets to the gamma (γ) sterilized 3DP constructs. To the authors' knowledge, there is no such guide/study implicating TPU, FDM 3D-printing and gamma sterilization. Thermal properties analyzed by differential scanning calorimetry (DSC) and molecular weights measured by size exclusion chromatography (SEC) were used as monitoring indicators through the fabrication process. After gamma sterilization, surface chemistry was assessed by water contact angle (WCA) measurement and infrared spectroscopy (ATR-FTIR). Mechanical properties were investigated by tensile testing. Biocompatibility was assessed by means of cytotoxicity (ISO 10993-5) and hemocompatibility assays (ISO 10993-4). Results showed that TPU underwent degradation through the fabrication process as both the number-averaged (Mn) and weight-averaged (Mw) molecular weights decreased (7% Mn loss, 30% Mw loss, p < 0.05). After gamma sterilization, Mw increased by 8% (p < 0.05) indicating that crosslinking may have occurred. However, tensile properties were not impacted by irradiation. Cytotoxicity (ISO 10993-5) and hemocompatibility (ISO 10993-4) assessments after sterilization showed vitality of cells (132% ± 3%, p < 0.05) and no red blood cell lysis. We concluded that gamma sterilization does not highly impact TPU regarding our application. Our study demonstrates the processability of TPU by FDM followed by gamma sterilization and can be used as a guide for the preliminary evaluation of a polymeric raw material in the manufacturing of a blood contacting implantable medical device.


In Vitro and In Vivo Evaluation of a Bio-Inspired Adhesive for Bone Fixation.

  • Matthias Schlund‎ et al.
  • Pharmaceutics‎
  • 2023‎

Compared to metallic hardware, an effective bone adhesive can revolutionize the treatment of clinically challenging situations such as comminuted, articular, and pediatric fractures. The present study aims to develop such a bio-inspired bone adhesive, based upon a modified mineral-organic adhesive with tetracalcium phosphate (TTCP) and phosphoserine (OPS) by incorporating nanoparticles of polydopamine (nPDA). The optimal formulation, which was screened using in vitro instrumental tensile adhesion tests, was found to be 50%molTTCP/50%molOPS-2%wtnPDA with a liquid-to-powder ratio of 0.21 mL/g. This adhesive has a substantially stronger adhesive strength (1.0-1.6 MPa) to bovine cortical bone than the adhesive without nPDA (0.5-0.6 MPa). To simulate a clinical scenario of autograft fixation under low mechanical load, we presented the first in vivo model: a rat fibula glued to the tibia, on which the TTCP/OPS-nPDA adhesive (n = 7) was shown to be effective in stabilizing the graft without displacement (a clinical success rate of 86% and 71% at 5 and 12 weeks, respectively) compared to a sham control (0%). Significant coverage of newly formed bone was particularly observed on the surface of the adhesive, thanks to the osteoinductive property of nPDA. To conclude, the TTCP/OPS-nPDA adhesive fulfilled many clinical requirements for the bone fixation, and potentially could be functionalized via nPDA to offer more biological activities, e.g., anti-infection after antibiotic loading.


Effects of Two Melt Extrusion Based Additive Manufacturing Technologies and Common Sterilization Methods on the Properties of a Medical Grade PLGA Copolymer.

  • Marion Gradwohl‎ et al.
  • Polymers‎
  • 2021‎

Although bioabsorbable polymers have garnered increasing attention because of their potential in tissue engineering applications, to our knowledge there are only a few bioabsorbable 3D printed medical devices on the market thus far. In this study, we assessed the processability of medical grade Poly(lactic-co-glycolic) Acid (PLGA)85:15 via two additive manufacturing technologies: Fused Filament Fabrication (FFF) and Direct Pellet Printing (DPP) to highlight the least destructive technology towards PLGA. To quantify PLGA degradation, its molecular weight (gel permeation chromatography (GPC)) as well as its thermal properties (differential scanning calorimetry (DSC)) were evaluated at each processing step, including sterilization with conventional methods (ethylene oxide, gamma, and beta irradiation). Results show that 3D printing of PLGA on a DPP printer significantly decreased the number-average molecular weight (Mn) to the greatest extent (26% Mn loss, p < 0.0001) as it applies a longer residence time and higher shear stress compared to classic FFF (19% Mn loss, p < 0.0001). Among all sterilization methods tested, ethylene oxide seems to be the most appropriate, as it leads to no significant changes in PLGA properties. After sterilization, all samples were considered to be non-toxic, as cell viability was above 70% compared to the control, indicating that this manufacturing route could be used for the development of bioabsorbable medical devices. Based on our observations, we recommend using FFF printing and ethylene oxide sterilization to produce PLGA medical devices.


In vivo evaluation of post-operative pain reduction on rat model after implantation of intraperitoneal PET meshes functionalised with cyclodextrins and loaded with ropivacaine.

  • Feng Chai‎ et al.
  • Biomaterials‎
  • 2019‎

The avoidance of post-herniorrhaphy pain can be challenging for hernia repair and has the greatest impact on patient's quality of life, health care utilisation and cost to society. Visceral meshes, functionalised with an efficient drug carrier system - hydroxypropyl beta-cyclodextrin polymer (polyHPβCD) coating, were developed to give a prolonged intraperitoneal analgesic drug release. We attempted to evaluate the in vivo pain-relief efficacy of ropivacaine loaded polyHPβCD functionalised polyester meshes in a rat model of visceral pain induced by colorectal distension (CRD). In vivo safety, pharmacokinetic profile and biodegradation were measured via histological analysis and high-performance liquid chromatography, etc. The results confirmed that the polyHPβCD on the functionalised meshes has a high adsorption capacity of ropivacaine and resulted in a sustained drug release in rats after mesh implantation. This was further reaffirmed by an elevated pain threshold (30%) up to 4 days after implantation in the rat CRD model, compared to 1-2 days for non-adapted meshes. Neither polyHPβCD nor the loaded ropivacaine had a major impact on the inflammatory response. This evidence strongly suggests that polyHPβCD functionalised visceral mesh could be a promising approach for post-operative pain control by improving the intraperitoneal drug delivery and bioavailability.


Systematic literature review of in vivo rat femoral defect models using biomaterials to improve the induced membrane technique: a comprehensive analysis.

  • Marc Saab‎ et al.
  • EFORT open reviews‎
  • 2024‎

The aim of this study was to conduct a systematic literature review analyzing the results of in vivo rat femoral defect models using biomaterials for improving the induced membrane technique (IMT).


Chitosan/Polycyclodextrin (CHT/PCD)-Based Sponges Delivering VEGF to Enhance Angiogenesis for Bone Regeneration.

  • Carla Palomino-Durand‎ et al.
  • Pharmaceutics‎
  • 2020‎

Vascularization is one of the main challenges in bone tissue engineering (BTE). In this study, vascular endothelial growth factor (VEGF), known for its angiogenic effect, was delivered by our developed sponge, derived from a polyelectrolyte complexes hydrogel between chitosan (CHT) and anionic cyclodextrin polymer (PCD). This sponge, as a scaffold for growth factor delivery, was formed by freeze-drying a homogeneous CHT/PCD hydrogel, and thereafter stabilized by a thermal treatment. Microstructure, water-uptake, biodegradation, mechanical properties, and cytocompatibility of sponges were assessed. VEGF-delivery following incubation in medium was then evaluated by monitoring the VEGF-release profile and its bioactivity. CHT/PCD sponge showed a porous (open porosity of 87.5%) interconnected microstructure with pores of different sizes (an average pore size of 153 μm), a slow biodegradation (12% till 21 days), a high water-uptake capacity (~600% in 2 h), an elastic property under compression (elastic modulus of compression 256 ± 4 kPa), and a good cytocompatibility in contact with osteoblast and endothelial cells. The kinetic release of VEGF was found to exert a pro-proliferation and a pro-migration effect on endothelial cells, which are two important processes during scaffold vascularization. Hence, CHT/PCD sponges were promising vehicles for the delivery of growth factors in BTE.


Influence of the Soluble⁻Insoluble Ratios of Cyclodextrins Polymers on the Viscoelastic Properties of Injectable Chitosan⁻Based Hydrogels for Biomedical Application.

  • Carla Palomino-Durand‎ et al.
  • Polymers‎
  • 2019‎

Injectable pre-formed physical hydrogels provide many advantages for biomedical applications. Polyelectrolyte complexes (PEC) formed between cationic chitosan (CHT) and anionic polymers of cyclodextrin (PCD) render a hydrogel of great interest. Given the difference between water-soluble (PCDs) and water-insoluble PCD (PCDi) in the extension of polymerization, the present study aims to explore their impact on the formation and properties of CHT/PCD hydrogel obtained from the variable ratios of PCDi and PCDs in the formulation. Hydrogels CHT/PCDi/PCDs at weight ratios of 3:0:3, 3:1.5:1.5, and 3:3:0 were elaborated in a double⁻syringe system. The chemical composition, microstructure, viscoelastic properties, injectability, and structural integrity of the hydrogels were investigated. The cytotoxicity of the hydrogel was also evaluated by indirect contact with pre-osteoblast cells. Despite having similar shear⁻thinning and self-healing behaviors, the three hydrogels showed a marked difference in their rheological characteristics, injectability, structural stability, etc., depending on their PCDi and PCDs contents. Among the three, all the best above-mentioned properties, in addition to a high cytocompatibility, were found in the hydrogel 3:1.5:1.5. For the first time, we gained a deeper understanding of the role of the PCDi/PCDs in the injectable pre-formed hydrogels (CHT/PCDi/PCDs), which could be further fine-tuned to enhance their performance in biomedical applications.


Autologous peritoneal grafts permit rapid reperitonealization and prevent postoperative abdominal adhesions in an experimental rat study.

  • Lucie Bresson‎ et al.
  • Surgery‎
  • 2017‎

Reperitonealization has attracted increasing attention for its potential to prevent postoperative abdominal adhesions and subsequent related complications. We studied the effect of an autologous peritoneal graft on reperitonealization and prevention of adhesions in a rat model.


Marine-Inspired Enzymatic Mineralization of Dairy-Derived Whey Protein Isolate (WPI) Hydrogels for Bone Tissue Regeneration.

  • Karl Norris‎ et al.
  • Marine drugs‎
  • 2020‎

Whey protein isolate (WPI) is a by-product from the production of cheese and Greek yoghurt comprising β-lactoglobulin (β-lg) (75%). Hydrogels can be produced from WPI solutions through heating; hydrogels can be sterilized by autoclaving. WPI hydrogels have shown cytocompatibility and ability to enhance proliferation and osteogenic differentiation of bone-forming cells. Hence, they have promise in the area of bone tissue regeneration. In contrast to commonly used ceramic minerals for bone regeneration, a major advantage of hydrogels is the ease of their modification by incorporating biologically active substances such as enzymes. Calcium carbonate (CaCO3) is the main inorganic component of the exoskeletons of marine invertebrates. Two polymorphs of CaCO3, calcite and aragonite, have shown the ability to promote bone regeneration. Other authors have reported that the addition of magnesium to inorganic phases has a beneficial effect on bone-forming cell growth. In this study, we employed a biomimetic, marine-inspired approach to mineralize WPI hydrogels with an inorganic phase consisting of CaCO3 (mainly calcite) and CaCO3 enriched with magnesium using the calcifying enzyme urease. The novelty of this study lies in both the enzymatic mineralization of WPI hydrogels and enrichment of the mineral with magnesium. Calcium was incorporated into the mineral formed to a greater extent than magnesium. Increasing the concentration of magnesium in the mineralization medium led to a reduction in the amount and crystallinity of the mineral formed. Biological studies revealed that mineralized and unmineralized hydrogels were not cytotoxic and promoted cell viability to comparable extents (approximately 74% of standard tissue culture polystyrene). The presence of magnesium in the mineral formed had no adverse effect on cell viability. In short, WPI hydrogels, both unmineralized and mineralized with CaCO3 and magnesium-enriched CaCO3, show potential as biomaterials for bone regeneration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: