Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 493 papers

Alginate-Encapsulated Mycobacteriophage: A Potential Approach for the Management of Intestinal Mycobacterial Disease.

  • Laura Michelle O'Connell‎ et al.
  • Viruses‎
  • 2023‎

Encapsulated medication is a common method of administering therapeutic treatments. As researchers explore alternative therapies, it is likely that encapsulation will remain a feature of these novel treatments, particularly when routes of delivery are considered. For instance, alginate-encapsulation is often favoured where gastric digestion poses an obstacle. When exposed to cations (namely Ca2+), alginate readily forms gels that are resilient to acidic conditions and readily dissociate in response to mid-range pH. This action can be extremely valuable for the encapsulation of phages. The efficient delivery of phages to the intestine is important when considering mycobacteriophage (MP) therapy (or MP prophylaxis) for disseminated mycobacterial infections and chronic gastroenteritis conditions. This study presents the design and in vitro validation of an alginate-encapsulated MP capable of releasing phages in a pH-dependent manner. Ultimately, it is shown that encapsulated phages pretreated with simulated gastric fluid (SGF) are capable of releasing viable phages into simulated intestinal fluid (SIF) and thereby reducing the mycobacterial numbers in spiked SIF by 90%. These findings suggest that alginate encapsulation may be a viable option for therapeutic and prophylactic approaches to the management of intestinal mycobacterial disease, such as Johne's disease.


Metagenomic Next-Generation Sequencing Reveals Individual Composition and Dynamics of Anelloviruses during Autologous Stem Cell Transplant Recipient Management.

  • Antonin Bal‎ et al.
  • Viruses‎
  • 2018‎

Over recent years, there has been increasing interest in the use of the anelloviruses, the major component of the human virome, for the prediction of post-transplant complications such as severe infections. Due to an important diversity, the comprehensive characterization of this viral family over time has been poorly studied. To overcome this challenge, we used a metagenomic next-generation sequencing (mNGS) approach with the aim of determining the individual anellovirus profile of autologous stem cell transplant (ASCT) patients. We conducted a prospective pilot study on a homogeneous patient cohort regarding the chemotherapy regimens that included 10 ASCT recipients. A validated viral mNGS workflow was used on 108 plasma samples collected at 11 time points from diagnosis to 90 days post-transplantation. A complex interindividual variability in terms of abundance and composition was noticed. In particular, a strong sex effect was found and confirmed using quantitative PCR targeting torque teno virus, the most abundant anellovirus. Interestingly, an important turnover in the anellovirus composition was observed during the course of the disease revealing a strong intra-individual variability. Although more studies are needed to better understand anellovirus dynamics, these findings are of prime importance for their future use as biomarkers of immune competence.


Correlating qRT-PCR, dPCR and Viral Titration for the Identification and Quantification of SARS-CoV-2: A New Approach for Infection Management.

  • Martina Brandolini‎ et al.
  • Viruses‎
  • 2021‎

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in Wuhan, China, in late 2019 and is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) represents the gold standard for diagnostic assays even if it cannot precisely quantify viral RNA copies. Thus, we decided to compare qRT-PCR with digital polymerase chain reaction (dPCR), which is able to give an accurate number of RNA copies that can be found in a specimen. However, the aforementioned methods are not capable to discriminate if the detected RNA is infectious or not. For this purpose, it is necessary to perform an endpoint titration on cell cultures, which is largely used in the research field and provides a tissue culture infecting dose per mL (TCID50/mL) value. Both research and diagnostics call for a model that allows the comparison between the results obtained employing different analytical methods. The aim of this study is to define a comparison among two qRT-PCR protocols (one with preliminary RNA extraction and purification and an extraction-free qRT-PCR), a dPCR and a titration on cell cultures. The resulting correlations yield a faithful estimation of the total number of RNA copies and of the infectious viral burden from a Ct value obtained with diagnostic routine tests. All these estimations take into consideration methodological errors linked to the qRT-PCR, dPCR and titration assays.


Modeling Infectious Bursal Disease Virus (IBDV) Antigenic Drift In Vitro.

  • Amin S Asfor‎ et al.
  • Viruses‎
  • 2022‎

Infectious bursal disease virus (IBDV) vaccines do not induce sterilizing immunity, and vaccinated birds can become infected with field strains. Vaccine-induced immune selection pressure drives the evolution of antigenic drift variants that accumulate amino acid changes in the hypervariable region (HVR) of the VP2 capsid, which may lead to vaccine failures. However, there is a lack of information regarding how quickly mutations arise, and the relative contribution different residues make to immune escape. To model IBDV antigenic drift in vitro, we serially passaged a classical field strain belonging to genogroup A1 (F52/70) ten times, in triplicate, in the immortalized chicken B cell line, DT40, in the presence of sub-neutralizing concentrations of sera from birds inoculated with IBDV vaccine strain 2512, to generate escape mutants. This assay simulated a situation where classical strains may infect birds that have suboptimal vaccine-induced antibody responses. We then sequenced the HVR of the VP2 capsid at passage (P) 5 and 10 and compared the sequences to the parental virus (P0), and to the virus passaged in the presence of negative control chicken serum that lacked IBDV antibodies. Two escape mutants at P10 had the same mutations, D279Y and G281R, and a third had mutations S251I and D279N. Furthermore, at P5, the D279Y mutation was detectable, but the G281R mutation was not, indicating the mutations arose with different kinetics.


Artemia spp., a Susceptible Host and Vector for Lymphocystis Disease Virus.

  • Estefania J Valverde‎ et al.
  • Viruses‎
  • 2019‎

Different developmental stages of Artemia spp. (metanauplii, juveniles and adults) were bath-challenged with two isolates of the Lymphocystis disease virus (LCDV), namely, LCDV SA25 (belonging to the species Lymphocystis disease virus 3) and ATCC VR-342 (an unclassified member of the genus Lymphocystivirus). Viral quantification and gene expression were analyzed by qPCR at different times post-inoculation (pi). In addition, infectious titres were determined at 8 dpi by integrated cell culture (ICC)-RT-PCR, an assay that detects viral mRNA in inoculated cell cultures. In LCDV-challenged Artemia, the viral load increased by 2-3 orders of magnitude (depending on developmental stage and viral isolate) during the first 8-12 dpi, with viral titres up to 2.3 × 102 Most Probable Number of Infectious Units (MPNIU)/mg. Viral transcripts were detected in the infected Artemia, relative expression values showed a similar temporal evolution in the different experimental groups. Moreover, gilthead seabream (Sparus aurata) fingerlings were challenged by feeding on LCDV-infected metanauplii. Although no Lymphocystis symptoms were observed in the fish, the number of viral DNA copies was significantly higher at the end of the experimental trial and major capsid protein (mcp) gene expression was consistently detected. The results obtained support that LCDV infects Artemia spp., establishing an asymptomatic productive infection at least under the experimental conditions tested, and that the infected metanauplii are a vector for LCDV transmission to gilthead seabream.


Newcastle Disease Virus: Potential Therapeutic Application for Human and Canine Lymphoma.

  • Diana Sánchez‎ et al.
  • Viruses‎
  • 2015‎

Research on oncolytic viruses has mostly been directed towards the treatment of solid tumors, which has yielded limited information regarding their activity in hematological cancer. It has also been directed towards the treatment of humans, yet veterinary medicine may also benefit. Several strains of the Newcastle disease virus (NDV) have been used as oncolytics in vitro and in a number of in vivo experiments. We studied the cytolytic effect of NDV-MLS, a low virulence attenuated lentogenic strain, on a human large B-cell lymphoma cell line (SU-DHL-4), as well as on primary canine-derived B-cell lymphoma cells, and compared them to healthy peripheral blood mononuclear cells (PBMC) from both humans and dogs. NDV-MLS reduced cell survival in both human (42% ± 5%) and dog (34% ± 12%) lymphoma cells as compared to untreated controls. No significant effect on PBMC was seen. Cell death involved apoptosis as documented by flow-cytometry. NDV-MLS infections of malignant lymphoma tumors in vivo in dogs were confirmed by electron microscopy. Early (24 h) biodistribution of intravenous injection of 1 × 10(12) TCID50 (tissue culture infective dose) in a dog with T-cell lymphoma showed viral localization only in the kidney, the salivary gland, the lung and the stomach by immunohistochemistry and/or endpoint PCR. We conclude that NDV-MLS may be a promising agent for the treatment of lymphomas. Future research is needed to elucidate the optimal therapeutic regimen and establish appropriate biosafety measures.


Clinical and Genetic Characteristics of the Heidenhain Variant of Creutzfeldt-Jakob Disease.

  • Yu Kong‎ et al.
  • Viruses‎
  • 2023‎

The Heidenhain variant of Creutzfeldt-Jakob disease (HvCJD), as a rare phenotype of CJD, has been under-recognized. We aim to elucidate the clinical and genetic features of HvCJD and investigate the differences of clinical features between genetic and sporadic HvCJD to improve our understanding of this rare subtype.


Prior Influenza Infection Mitigates SARS-CoV-2 Disease in Syrian Hamsters.

  • Caterina Di Pietro‎ et al.
  • Viruses‎
  • 2024‎

Seasonal infection rates of individual viruses are influenced by synergistic or inhibitory interactions between coincident viruses. Endemic patterns of SARS-CoV-2 and influenza infection overlap seasonally in the Northern hemisphere and may be similarly influenced. We explored the immunopathologic basis of SARS-CoV-2 and influenza A (H1N1pdm09) interactions in Syrian hamsters. H1N1 given 48 h prior to SARS-CoV-2 profoundly mitigated weight loss and lung pathology compared to SARS-CoV-2 infection alone. This was accompanied by the normalization of granulocyte dynamics and accelerated antigen-presenting populations in bronchoalveolar lavage and blood. Using nasal transcriptomics, we identified a rapid upregulation of innate and antiviral pathways induced by H1N1 by the time of SARS-CoV-2 inoculation in 48 h dual-infected animals. The animals that were infected with both viruses also showed a notable and temporary downregulation of mitochondrial and viral replication pathways. Quantitative RT-PCR confirmed a decrease in the SARS-CoV-2 viral load and lower cytokine levels in the lungs of animals infected with both viruses throughout the course of the disease. Our data confirm that H1N1 infection induces rapid and transient gene expression that is associated with the mitigation of SARS-CoV-2 pulmonary disease. These protective responses are likely to begin in the upper respiratory tract shortly after infection. On a population level, interaction between these two viruses may influence their relative seasonal infection rates.


Clinical and Laboratory Parameters of Carp Edema Virus Disease: A Case Report.

  • Ivana Papežíková‎ et al.
  • Viruses‎
  • 2023‎

In the present study, we describe a natural outbreak of carp edema virus disease (CEVD) in koi carp, concentrating on clinical manifestation, gross and microscopic pathology, immunological parameters, viral diagnostics, and phylogenetic analysis. Examination of white blood cell parameters showed increased monocyte and decreased lymphocyte counts in CEV-affected fish compared to healthy control fish. Regarding immune system functioning, the present work shows, for the first time, enhanced phagocytic activity in CEV-affected fish. Respiratory burst of phagocytes was strongly increased in diseased fish, the increase being attributed to an increased phagocyte count rather than enhancement of their metabolic activity. The present work also newly shows histopathological changes in the pancreatic tissue of diseased koi.


Early Humoral Response Correlates with Disease Severity and Outcomes in COVID-19 Patients.

  • Anwar M Hashem‎ et al.
  • Viruses‎
  • 2020‎

The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Antigen-specific responses are of unquestionable value for clinical management of COVID-19 patients. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized COVID-19 patients with different disease presentations (i.e., mild, moderate or severe), need for intensive care units (ICU) admission or outcomes (i.e., survival vs death). We show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Interestingly, significantly higher levels of nAbs as well as anti-S1 and -N IgG and IgM antibodies were found in patients with more severe symptoms, patients requiring admission to ICU or those with fatal outcomes. More importantly, early after symptoms onset, we found that the levels of anti-N antibodies correlated strongly with disease severity. Collectively, these findings provide new insights into the kinetics of antibody responses in COVID-19 patients with different disease severity.


Multiplex RT-qPCR Application in Early Detection of Bovine Respiratory Disease in Healthy Calves.

  • Yusuke Goto‎ et al.
  • Viruses‎
  • 2023‎

Bovine respiratory diseases (BRD) are associated with various predisposing factors, such as physical and physiological stress factors, and bacterial and viral pathogens. These stressors and viruses suppress immune defenses, leading to bacterial growth in the upper respiratory tract and invasion of pathogens into the lower respiratory tract. Therefore, continuous monitoring of the causative pathogens would contribute to the early detection of BRD. Nasal swabs and sera from 63 clinically healthy calves were continuously collected from seven farms in Iwate prefecture from 2019 to 2021. We attempted to monitor dynamics of BRD-associated pathogens by multiplex real-time RT-PCR (RT-qPCR) using their nasal swab samples. In addition, we attempted to monitor fluctuation of antibody titers against each BRD-associated pathogen by virus neutralization test (VNT) using their sera. In contrast, nasal swabs from 89 calves infected with BRD were collected from 28 farms in Iwate prefecture from 2019 to 2021. We attempted to analyze their nasal swab samples by multiplex RT-qPCR aim to detect BRD-associated pathogens that are dominant in this region. As a result, our analyses using samples from clinically healthy calves showed that positive results by multiplex RT-qPCR were closely related to a significant increase of antibody titers by VNT in bovine coronavirus (BCoV), bovine torovirus (BToV), and bovine respiratory syncytial virus (BRSV). In addition, our data exhibited that BCoV, BToV, BRSV, bovine parainfluenza virus 3, and Mycoplasma bovis have been more frequently detected in calves infected with BRD compared to those detected in clinically healthy calves. Moreover, the data presented herein revealed co-infections by combination multiple viral pathogens with bacterial pathogens are closely involved in the onset of BRD. Taken together, our study demonstrates multiplex RT-qPCR which can simultaneously analyze multiple pathogens, including viruses and bacteria, and is useful for the early detection of BRD.


Vector Surveillance, Host Species Richness, and Demographic Factors as West Nile Disease Risk Indicators.

  • John M Humphreys‎ et al.
  • Viruses‎
  • 2021‎

West Nile virus (WNV) is the most common arthropod-borne virus (arbovirus) in the United States (US) and is the leading cause of viral encephalitis in the country. The virus has affected tens of thousands of US persons total since its 1999 North America introduction, with thousands of new infections reported annually. Approximately 1% of humans infected with WNV acquire neuroinvasive West Nile Disease (WND) with severe encephalitis and risk of death. Research describing WNV ecology is needed to improve public health surveillance, monitoring, and risk assessment. We applied Bayesian joint-spatiotemporal modeling to assess the association of vector surveillance data, host species richness, and a variety of other environmental and socioeconomic disease risk factors with neuroinvasive WND throughout the conterminous US. Our research revealed that an aging human population was the strongest disease indicator, but climatic and vector-host biotic interactions were also significant in determining risk of neuroinvasive WND. Our analysis also identified a geographic region of disproportionately high neuroinvasive WND disease risk that parallels the Continental Divide, and extends southward from the US-Canada border in the states of Montana, North Dakota, and Wisconsin to the US-Mexico border in western Texas. Our results aid in unraveling complex WNV ecology and can be applied to prioritize disease surveillance locations and risk assessment.


Polymorphisms Related to Iron Homeostasis Associate with Liver Disease in Chronic Hepatitis C.

  • Anna Wróblewska‎ et al.
  • Viruses‎
  • 2023‎

Dysregulation of iron metabolism in chronic hepatitis C (CHC) is a significant risk factor for hepatic cirrhosis and cancer. We studied if known genetic variants related to iron homeostasis associate with liver disease progression in CHC. Retrospective analysis included 249 CHC patients qualified for antiviral therapy between 2004 and 2014. For all patients, nine SNPs within HFE, TFR2, HDAC2, HDAC3, HDAC5, TMPRSS6, and CYBRD1 genes were genotyped. Expression of selected iron-related genes, was determined with qRT-PCR in 124 liver biopsies, and mRNA expression of co-inhibitory receptors (PD-1, Tim3, CTLA4) was measured in 79 liver samples. CYBRD1 rs884409, HDAC5 rs368328, TFR2 rs7385804, and TMPRSS6 rs855791 associated with histopathological changes in liver tissue at baseline. The combination of minor allele in HDAC3 rs976552 and CYBRD1 rs884409 linked with higher prevalence of hepatocellular carcinoma (HCC) during follow up (OR 8.1 CI 2.2-29.2; p = 0.001). Minor allele in HDAC3 rs976552 associated with lower hepatic expression of CTLA4. Tested polymorphisms related to iron homeostasis associate with histopathological changes in the liver. The presence of both HDAC3 rs976552 G and CYBRD1 rs884409 G alleles correlates with HCC occurrence, especially in the group of patients with elevated AST (>129 IU/L). rs976552 in HDAC3 could impact immunological processes associated with carcinogenesis in CHC.


Age and Infectious Dose Significantly Affect Disease Progression after RHDV2 Infection in Naïve Domestic Rabbits.

  • Robyn N Hall‎ et al.
  • Viruses‎
  • 2021‎

Rabbit haemorrhagic disease virus 2 (RHDV2 or GI.2, referring to any virus with lagovirus GI.2 structural genes) is a recently emerged calicivirus that causes generalised hepatic necrosis and disseminated intravascular coagulation leading to death in susceptible lagomorphs (rabbits and hares). Previous studies investigating the virulence of RHDV2 have reported conflicting results, with case fatality rates ranging from 0% to 100% even within a single study. Lagoviruses are of particular importance in Australia and New Zealand where they are used as biocontrol agents to manage wild rabbit populations, which threaten over 300 native species and result in economic impacts in excess of $200 million AUD annually to Australian agricultural industries. It is critically important that any pest control method is both highly effective (i.e., virulent, in the context of viral biocontrols) and has minimal animal welfare impacts. To determine whether RHDV2 might be a suitable candidate biocontrol agent, we investigated the virulence and disease progression of a naturally occurring Australian recombinant RHDV2 in both 5-week-old and 11-week-old New Zealand White laboratory rabbits after either high or low dose oral infection. Objective measures of disease progression were recorded through continuous body temperature monitoring collars, continuous activity monitors, and twice daily observations. We observed a 100% case fatality rate in both infected kittens and adult rabbits after either high dose or low dose infection. Clinical signs of disease, such as pyrexia, weight loss, and reduced activity, were evident in the late stages of infection. Clinical disease, i.e., welfare impacts, were limited to the period after the onset of pyrexia, lasting on average 12 h and increasing in severity as disease progressed. These findings confirm the high virulence of this RHDV2 variant in naïve rabbits. While age and infectious dose significantly affected disease progression, the case fatality rate was consistently 100% under all conditions tested.


A Single-Cycle Adenovirus Type 7 Vaccine for Prevention of Acute Respiratory Disease.

  • Brianna L Bullard‎ et al.
  • Viruses‎
  • 2019‎

Adenovirus type 7 (Ad7) infection is associated with acute respiratory disease (ARD), especially in military recruits living in close quarters. Recently, several outbreaks of Ad7 infections have occurred in civilian populations, with some cases leading to death. However, the current Ad7 vaccine is licensed for use only in military recruits because it utilizes an orally delivered wild type virus which is shed in the stool for 28 days after immunization. This poses a safety risk due to the possibility of virus spread to vulnerable populations. To address the need for a safer Ad7 vaccine for use in civilian populations, we developed a single-cycle Ad7 virus (scAd7). This scAd7 virus is deleted for the Ad7 fiber protein, so that viruses produced outside of complementing cells lines lack this essential structural protein and have severely reduced infectivity. In vitro studies in noncomplementing A549 cells showed that the scAd7 virus has genomic DNA replication kinetics and Ad7 hexon expression similar to a replication-competent virus; however, virus progeny produced after infection has impaired infectivity. Therefore, this scAd7 virus combines the safety advantages of a replication-defective virus with the increased Ad7 gene expression of a replication-competent virus. Due to these advantages, we believe that scAd7 viruses should be further studied as an alternative, safer Adenovirus 7 vaccine.


Infectious Bursal Disease Virus Assembly Causes Endoplasmic Reticulum Stress and Lipid Droplet Accumulation.

  • Yesica R Frontini-López‎ et al.
  • Viruses‎
  • 2023‎

Gumboro illness is caused by the highly contagious immunosuppressive infectious bursal disease virus (IBDV), which affects the poultry industry globally. We have previously shown that IBDV hijacks the endocytic pathway to construct viral replication complexes on endosomes linked to the Golgi complex (GC). Then, analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b, the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), and its substrate, the small GTPase ADP-ribosylation factor 1 (ARF1), for IBDV replication. In the current work, we focused on elucidating the IBDV assembly sites. We show that viral assembly occurs within single-membrane compartments closely associated with endoplasmic reticulum (ER) membranes, though we failed to elucidate the exact nature of the virus-wrapping membranes. Additionally, we show that IBDV infection promotes the stress of the ER, characterized by an accumulation of the chaperone binding protein (BiP) and lipid droplets (LDs) in the host cells. Overall, our results represent further original data showing the interplay between IBDV and the secretory pathway, making a substantial contribution to the field of birnaviruses-host cell interactions.


Serpentovirus (Nidovirus) and Orthoreovirus Coinfection in Captive Veiled Chameleons (Chamaeleo calyptratus) with Respiratory Disease.

  • Laura L Hoon-Hanks‎ et al.
  • Viruses‎
  • 2020‎

Serpentoviruses are an emerging group of nidoviruses known to cause respiratory disease in snakes and have been associated with disease in other non-avian reptile species (lizards and turtles). This study describes multiple episodes of respiratory disease-associated mortalities in a collection of juvenile veiled chameleons (Chamaeleo calyptratus). Histopathologic lesions included rhinitis and interstitial pneumonia with epithelial proliferation and abundant mucus. Metagenomic sequencing detected coinfection with two novel serpentoviruses and a novel orthoreovirus. Veiled chameleon serpentoviruses are most closely related to serpentoviruses identified in snakes, lizards, and turtles (approximately 40-50% nucleotide and amino acid identity of ORF1b). Veiled chameleon orthoreovirus is most closely related to reptilian orthoreoviruses identified in snakes (approximately 80-90% nucleotide and amino acid identity of the RNA-dependent RNA polymerase). A high prevalence of serpentovirus infection (>80%) was found in clinically healthy subadult and adult veiled chameleons, suggesting the potential for chronic subclinical carriers. Juvenile veiled chameleons typically exhibited a more rapid progression compared to subadults and adults, indicating a possible age association with morbidity and mortality. This is the first description of a serpentovirus infection in any chameleon species. A causal relationship between serpentovirus infection and respiratory disease in chameleons is suspected. The significance of orthoreovirus coinfection remains unknown.


In Vitro and In Vivo Metabolomic Profiling after Infection with Virulent Newcastle Disease Virus.

  • Panrao Liu‎ et al.
  • Viruses‎
  • 2019‎

Newcastle disease (ND) is an acute, febrile, highly contagious disease caused by the virulent Newcastle disease virus (vNDV). The disease causes serious economic losses to the poultry industry. However, the metabolic changes caused by vNDV infection remain unclear. The objective of this study was to determine the metabolomic profiling after infection with vNDV. DF-1 cells infected with the vNDV strain Herts/33 and the lungs from Herts/33-infected specific pathogen-free (SPF) chickens were analyzed via ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) in combination with multivariate statistical analysis. A total of 305 metabolites were found to have changed significantly after Herts/33 infection, and most of them belong to the amino acid and nucleotide metabolic pathway. It is suggested that the increased pools of amino acids and nucleotides may benefit viral protein synthesis and genome amplification to promote NDV infection. Similar results were also confirmed in vivo. Identification of these metabolites will provide information to further understand the mechanism of vNDV replication and pathogenesis.


Recent Information on Pan-Genotypic Direct-Acting Antiviral Agents for HCV in Chronic Kidney Disease.

  • Fabrizio Fabrizi‎ et al.
  • Viruses‎
  • 2022‎

Hepatitis C virus (HCV) is still common in patients with chronic kidney disease. It has been recently discovered that chronic HCV is a risk factor for increased incidence of CKD in the adult general population. According to a systematic review with a meta-analysis of clinical studies, pooling results of longitudinal studies (n = 2,299,134 unique patients) demonstrated an association between positive anti-HCV serologic status and increased incidence of CKD; the summary estimate for adjusted HR across the surveys was 1.54 (95% CI, 1.26; 1.87), (p < 0.0001). The introduction of direct-acting antiviral drugs (DAAs) has caused a paradigm shift in the management of HCV infection; recent guidelines recommend pan-genotypic drugs (i.e., drugs effective on all HCV genotypes) as the first-choice therapy for HCV, and these promise to be effective and safe even in the context of chronic kidney disease.


Exosomes Carry microRNAs into Neighboring Cells to Promote Diffusive Infection of Newcastle Disease Virus.

  • Changluan Zhou‎ et al.
  • Viruses‎
  • 2019‎

Newcastle disease virus (NDV), an avian paramyxovirus, was shown to prefer to replicate in tumor cells instead of normal cells; however, this mechanism has not been fully elucidated. Exosomes play a crucial role in intercellular communication due to the bioactive substances they carry. Several studies have shown that exosomes are involved in virus infections. However, the effect that exosomes have on NDV-infected tumor cells is not known. In this study, we focus on the role of exosomes secreted by NDV-infected HeLa cells in promoting NDV replication. Three miRNA candidates (miR-1273f, miR-1184, and miR-198) embraced by exosomes were associated with enhancing NDV-induced cytopathic effects on HeLa cells. Furthermore, luciferase assays, RT-qPCR, and enzyme-linked immunosorbent assay (ELISA) all demonstrated that these miRNAs could suppress interferon (IFN)-β gene expression. Enhanced NDV replication in HeLa cells was identified by Western blot and plaque assays. Based on these results, we speculate that NDV employed exosomes entry into neighboring cells, which carry miRNAs, resulting in inhibition of the IFN pathway and promotion of viral infection. To our knowledge, this is the first report on the involvement of NDV-employed exosomes in tumor cells, and as such, it provides new insights into the development of anti-tumor therapies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: