Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Dipeptidyl Peptidase-4 Inhibition With Saxagliptin Ameliorates Angiotensin II-Induced Cardiac Diastolic Dysfunction in Male Mice.

  • Scott M Brown‎ et al.
  • Endocrinology‎
  • 2017‎

Activation of the renin-angiotensin-aldosterone system is common in hypertension and obesity and contributes to cardiac diastolic dysfunction, a condition for which no treatment currently exists. In light of recent reports that antihyperglycemia incretin enhancing dipeptidyl peptidase (DPP)-4 inhibitors exert cardioprotective effects, we examined the hypothesis that DPP-4 inhibition with saxagliptin (Saxa) attenuates angiotensin II (Ang II)-induced cardiac diastolic dysfunction. Male C57BL/6J mice were infused with either Ang II (500 ng/kg/min) or vehicle for 3 weeks receiving either Saxa (10 mg/kg/d) or placebo during the final 2 weeks. Echocardiography revealed Ang II-induced diastolic dysfunction, evidenced by impaired septal wall motion and prolonged isovolumic relaxation, coincident with aortic stiffening. Ang II induced cardiac hypertrophy, coronary periarterial fibrosis, TRAF3-interacting protein 2 (TRAF3IP2)-dependent proinflammatory signaling [p-p65, p-c-Jun, interleukin (IL)-17, IL-18] associated with increased cardiac macrophage, but not T cell, gene expression. Flow cytometry revealed Ang II-induced increases of cardiac CD45+F4/80+CD11b+ and CD45+F4/80+CD11c+ macrophages and CD45+CD4+ lymphocytes. Treatment with Saxa reduced plasma DPP-4 activity and abrogated Ang II-induced cardiac diastolic dysfunction independent of aortic stiffening or blood pressure. Furthermore, Saxa attenuated Ang II-induced periarterial fibrosis and cardiac inflammation, but not hypertrophy or cardiac macrophage infiltration. Analysis of Saxa-induced changes in cardiac leukocytes revealed Saxa-dependent reduction of the Ang II-mediated increase of cardiac CD11c messenger RNA and increased cardiac CD8 gene expression and memory CD45+CD8+CD44+ lymphocytes. In summary, these results demonstrate that DPP-4 inhibition with Saxa prevents Ang II-induced cardiac diastolic dysfunction, fibrosis, and inflammation associated with unique shifts in CD11c-expressing leukocytes and CD8+ lymphocytes.


DPP-4 Inhibition with Anagliptin Reduces Lipotoxicity-Induced Insulin Resistance and Steatohepatitis in Male Mice.

  • Yuriko Sakai‎ et al.
  • Endocrinology‎
  • 2020‎

Excessive hepatic lipid accumulation drives the innate immune system and aggravates insulin resistance, hepatic inflammation, and fibrogenesis, leading to nonalcoholic steatohepatitis (NASH). Dipeptidyl peptidase-4 (DPP-4) regulates glucose metabolism and is expressed in many different cell types, including the cells of the immune system. In addition, DPP-4 may be involved in macrophage-mediated inflammation and insulin resistance. This study investigated the effects of anagliptin (Ana), an inhibitor of DPP-4, on macrophage polarity and phenotype in the livers of mice with steatohepatitis. We investigated the effects of Ana on steatohepatitis induced via a high-cholesterol high-fat (CL) diet or a choline-deficient L-amino acid-defined, high-fat (CDAHF) diet. DPP-4 activity, liver histology, and insulin sensitivity were evaluated, and liver DPP-4+ macrophages were quantified using fluorescence-activated cell sorting (FACS). Liver and plasma DPP-4 activity increased significantly in mice on both diets. FACS revealed that, compared with chow-fed mice, the CL-fed mice exhibited a significant increase in the proportion of DPP-4+ liver macrophages, particularly the M1-type macrophages. Ana decreased hepatic lipid and M1 macrophage accumulation and stimulated M2 macrophage accumulation in the liver, thereby attenuating insulin resistance, steatohepatitis, and fibrosis. Importantly, Ana alleviated hepatic fibrosis and steatohepatitis in mice fed CL diet and CDAHF diet. Using Ana to inhibit DPP-4 reduced lipotoxicity-induced hepatic insulin resistance through regulating the M1/M2 macrophage status.


Transient Dexamethasone Loading Induces Prolonged Hyperglycemia in Male Mice With Histone Acetylation in Dpp-4 Promoter.

  • Asuka Uto‎ et al.
  • Endocrinology‎
  • 2021‎

Glucocorticoid causes hyperglycemia, which is common in patients with or without diabetes. Prolonged hyperglycemia can be experienced even after the discontinuation of glucocorticoid use. In the present study, we examined the time course of blood glucose level in hospital patients who received transient glucocorticoid treatment. In addition, the mechanism of prolonged hyperglycemia was investigated by using dexamethasone (Dexa)-treated mice and cultured cells. The blood glucose level in glucose tolerance tests, level of insulin and glucagon-like peptide 1 (GLP-1), and the activity of dipeptidyl peptidase 4 (DPP-4) were examined during and after Dexa loading in mice, with histone acetylation level of the promoter region. Mice showed prolonged hyperglycemia during and after transient Dexa loading accompanied by persistently lower blood GLP-1 level and higher activity of DPP-4. The expression level of Dpp-4 was increased in the mononuclear cells and the promoter region of Dpp-4 was hyperacetylated during and after the transient Dexa treatment. In vitro experiments also indicated development of histone hyperacetylation in the Dpp-4 promoter region during and after Dexa treatment. The upregulation of Dpp-4 in cultured cells was significantly inhibited by a histone acetyltransferase inhibitor. Moreover, the histone hyperacetylation induced by Dexa was reversible by treatment with a sirtuin histone deacetylase activator, nicotinamide mononucleotide. We identified persistent reduction in blood GLP-1 level with hyperglycemia during and after Dexa treatment in mice, associated with histone hyperacetylation of promoter region of Dpp-4. The results unveil a novel mechanism of glucocorticoid-induced hyperglycemia, and suggest therapeutic intervention through epigenetic modification of Dpp-4.


Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-κB Activation.

  • Chikayo Iwaya‎ et al.
  • Endocrinology‎
  • 2017‎

Incretin therapies have received much attention because of their tissue-protective effects, which extend beyond those associated with glycemic control. Cancer is a primary cause of death in patients who have diabetes mellitus. We previously reported antiprostate cancer effects of the glucagonlike peptide-1 (GLP-1) receptor (GLP-1R) agonist exendin-4 (Ex-4). Breast cancer is one of the most common cancers in female patients who have type 2 diabetes mellitus and obesity. Thus, we examined whether GLP-1 action could attenuate breast cancer. GLP-1R was expressed in human breast cancer tissue and MCF-7, MDA-MB-231, and KPL-1 cell lines. We found that 0.1 to 10 nM Ex-4 significantly decreased the number of breast cancer cells in a dose-dependent manner. Although Ex-4 did not induce apoptosis, it attenuated breast cancer cell proliferation significantly and dose-dependently. However, the dipeptidyl peptidase-4 inhibitor linagliptin did not affect breast cancer cell proliferation. When MCF-7 cells were transplanted into athymic mice, Ex-4 decreased MCF-7 tumor size in vivo. Ki67 immunohistochemistry revealed that breast cancer cell proliferation was significantly reduced in tumors extracted from Ex-4-treated mice. In MCF-7 cells, Ex-4 significantly inhibited nuclear factor κB (NF-κB ) nuclear translocation and target gene expression. Furthermore, Ex-4 decreased both Akt and IκB phosphorylation. These results suggest that GLP-1 could attenuate breast cancer cell proliferation via activation of GLP-1R and subsequent inhibition of NF-κB activation.


Degradation Paradigm of the Gut Hormone, Pancreatic Polypeptide, by Hepatic and Renal Peptidases.

  • Joyceline Cuenco‎ et al.
  • Endocrinology‎
  • 2017‎

Pancreatic polypeptide (PP) is a gut hormone that acts on Y4 receptors to reduce appetite. Obese humans display a reduced postprandial increase in PP and remain fully sensitive to the anorectic effects of exogenous PP. The utility of PP as an anti-obesity treatment is limited by its short circulating half-life. Insight into the mechanisms by which PP is degraded could aid in the design of long-acting PP analogs. We investigated the role of peptidases in PP degradation to determine whether inhibition of these enzymes enhanced PP plasma levels and bioactivity in vivo. Dipeptidyl peptidase IV (DPPIV) and neprilysin (NEP) were two peptidase found to cleave PP. Limiting the effect of both peptidases improved the in vivo anorectic effect of PP and PP-based analogs. These findings suggest that inhibiting the degradation of PP using specific inhibitors and/or the design of analogs resistant to cleavage by DPPIV and NEP might be useful in the development of PP as an anti-obesity pharmacotherapy.


Beta-Hydroxybutyrate Suppresses Hepatic Production of the Ghrelin Receptor Antagonist LEAP2.

  • Stephanie Holm‎ et al.
  • Endocrinology‎
  • 2022‎

Liver-expressed antimicrobial peptide-2 (LEAP2) is an endogenous ghrelin receptor antagonist, which is upregulated in the fed state and downregulated during fasting. We hypothesized that the ketone body beta-hydroxybutyrate (BHB) is involved in the downregulation of LEAP2 during conditions with high circulating levels of BHB.


Intestinal Bile Acid Composition Modulates Prohormone Convertase 1/3 (PC1/3) Expression and Consequent GLP-1 Production in Male Mice.

  • Kohkichi Morimoto‎ et al.
  • Endocrinology‎
  • 2016‎

Besides an established medication for hypercholesterolemia, bile acid binding resins (BABRs) present antidiabetic effects. Although the mechanisms underlying these effects are still enigmatic, glucagon-like peptide-1 (GLP-1) appears to be involved. In addition to a few reported mechanisms, we propose prohormone convertase 1/3 (PC1/3), an essential enzyme of GLP-1 production, as a potent molecule in the GLP-1 release induced by BABRs. In our study, the BABR colestimide leads to a bile acid-specific G protein-coupled receptor TGR5-dependent induction of PC1/3 gene expression. Here, we focused on the alteration of intestinal bile acid composition and consequent increase of total TGR5 agonistic activity to explain the TGR5 activation. Furthermore, we demonstrate that nuclear factor of activated T cells mediates the TGR5-triggered PC1/3 gene expression. Altogether, our data indicate that the TGR5-dependent intestinal PC1/3 gene expression supports the BABR-stimulated GLP-1 release. We also propose a combination of BABR and dipeptidyl peptidase-4 inhibitor in the context of GLP-1-based antidiabetic therapy.


Characterization of the exocrine pancreas in the male Zucker diabetic fatty rat model of type 2 diabetes mellitus following 3 months of treatment with sitagliptin.

  • Thomas Forest‎ et al.
  • Endocrinology‎
  • 2014‎

Sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor-based incretin therapy intended for the treatment of type 2 diabetes mellitus (T2DM), has not been linked to adverse effects on the pancreas in prospective clinical trials or in nonclinical toxicology studies. To further assess potential pancreatic effects, sitagliptin was studied in the male Zucker diabetic fatty (ZDF) rat model of T2DM. Following 3 months of oral dosing with vehicle, or sitagliptin at doses 3- to 19-fold above the clinically therapeutic plasma concentration, which increased active plasma glucagon-like peptide-1 levels up to approximately 3-fold, or following 3 months of oral dosing with metformin, a non-incretin-based reference T2DM treatment, the pancreas of male ZDF rats was evaluated using qualitative and quantitative histopathology techniques. In the quantitative evaluation, proliferative index was calculated in exocrine pancreatic ducts and ductules using computer-based image analysis on sections stained by immunohistochemistry for cytokeratin (a cytoplasmic epithelial cell marker) and Ki-67 (a nuclear marker of recent cell division). Relative to controls, sitagliptin treatment did not alter disease progression based on detailed clinical signs and clinical pathology assessments. Sitagliptin treatment did not result in pancreatitis or any adverse effect on the pancreas based on a qualitative histopathology evaluation. Proliferative index did not increase with sitagliptin treatment based on quantitative assessment of more than 5000 sections of pancreas, where control group means ranged from 0.698-0.845% and sitagliptin-treated group means ranged from 0.679-0.701% (P = .874). Metformin treatment was similarly evaluated and found not to have adverse effects on pancreas.


Glucagon-Like Peptide-1 Is Involved in the Thermic Effects of Dietary Proteins in Male Rodents.

  • Keita Ochiai‎ et al.
  • Endocrinology‎
  • 2023‎

Protein intake potently increases body temperature and energy expenditure, but the underlying mechanism thereof remains incompletely understood. Simultaneously, protein intake potently stimulates glucagon-like peptide-1 (GLP-1) secretion. Here, we examined the involvement of GLP-1 in the thermic effects of dietary proteins in rodents by measuring rectal temperature and energy expenditure and modulating GLP-1 signaling. Rectal temperature of rats or mice fasted for 4 or 5 hours were measured using a thermocouple thermometer before and after an oral administration of nutrients. Oxygen consumption after oral protein administration was also measured in rats. Rectal temperature measurements in rats confirmed an increase in core body temperature after refeeding, and the thermic effect of the oral administration of protein was greater than that of a representative carbohydrate or lipid. Among the five dietary proteins examined (casein, whey, rice, egg, and soy), soy protein had the highest thermic effect. The thermic effect of soy protein was also demonstrated by increased oxygen consumption. Studies using a nonselective β-adrenergic receptor antagonist and thermal camera suggested that brown adipose tissue did not contribute to soy protein-induced increase in rectal temperature. Furthermore, the thermic effect of soy protein was completely abolished by antagonism and knockout of the GLP-1 receptor, yet potentiated via augmentation of intact GLP-1 levels through inhibition of dipeptidyl peptidase-4 activity. These results indicate that GLP-1 signaling is essential for the thermic effects of dietary proteins in rats and mice, and extend the metabolic actions of GLP-1 ensuing from nutrient ingestion to encompass the thermic response to ingested protein.


Prevention of obesity-induced renal injury in male mice by DPP4 inhibition.

  • Ravi Nistala‎ et al.
  • Endocrinology‎
  • 2014‎

Therapies to prevent renal injury in obese hypertensive individuals are being actively sought due to the obesity epidemic arising from the Western diet (WD), which is high in fructose and fat. Recently, activation of the immune system and hyperuricemia, observed with high fructose intake, have been linked to the pathophysiology of hypertension and renal injury. Because dipeptidyl peptidase 4 (DPP4) is a driver of maladaptive T-cell/macrophage responses, renal-protective benefits of DPP4 inhibition in the WD-fed mice were examined. Mice fed a WD for 16 weeks were given the DPP4 inhibitor MK0626 in their diet beginning at 4 weeks of age. WD-fed mice were obese, hypertensive, and insulin-resistant and manifested proteinuria and increased plasma DPP4 activity and uric acid levels. WD-fed mice also had elevated kidney DPP4 activity and monocyte chemoattractant protein-1 and IL-12 levels and suppressed IL-10 levels in the kidney, suggesting macrophage-driven inflammation, glomerular and tubulointerstitial injury. WD-induced increases in DPP4 activation in the plasma and kidney and proteinuria in WD mice were abrogated by MK0626, although blood pressure and systemic insulin sensitivity were not improved. Contemporaneously, MK0626 reduced serum uric acid levels, renal oxidative stress, and IL-12 levels and increased IL-10 levels, suggesting that suppression of DPP4 activity leads to suppression of renal immune/inflammatory injury responses to a WD. Taken together, these results demonstrate that DPP4 inhibition prevents high-fructose/high-fat diet-induced glomerular and tubular injury independent of blood pressure/insulin sensitivity and offers a potentially novel therapy for diabetic and obesity-related kidney disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: