Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Desmoglein-2 as a prognostic and biomarker in ovarian cancer.

  • Jiho Kim‎ et al.
  • Cancer biology & therapy‎
  • 2020‎

Greater than 80% of all cancer cases are carcinomas, formed by the malignant transformation of epithelial cells. One of the key features of epithelial tumors is the presence of intercellular junctions, which link cells to one another and act as barriers to the penetration of molecules. This study assessed the expression of desmoglein-2, an epithelial junction protein, as a prognostic and diagnostic biomarker for ovarian cancer. Ovarian cancer sections were stained for DSG2 and signal intensity was correlated to cancer type and grade. DSG2 immunohistochemistry signals and mRNA levels were analyzed in chemo-resistant and chemo-sensitive cases. Ovarian cancer patient serum levels of shed DSG2 were correlated to disease-free and overall survival. Primary ovarian cancer cells were used to study DSG2 levels as they changed in response to cisplatin treatment. DSG2 expression was found to be positively correlated with cancer grade. Ovarian cancer patients with high serum levels of shed DSG2 fared significantly worse in both progression-free survival (median survival of 16 months vs. 26 months, p = .0023) and general survival (median survival of 37 months vs. undefined, p < .0001). A subgroup of primary chemotherapy-resistant cases had stronger DSG2 IHC/Western signals and higher DSG2 mRNA levels. Furthermore, our in vitro studies indicate that non-cytotoxic doses of cisplatin can enhance DSG2 expression, which, in turn, can contribute to chemo-resistance. We suggest that DSG2 can be used in stratifying patients, deciding on where to use aggressive treatment strategies, predicting chemoresistance, and as a companion diagnostic for treatments targeting DSG2.


Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14.

  • Hongjie Wang‎ et al.
  • Nature medicine‎
  • 2011‎

We have identified desmoglein-2 (DSG-2) as the primary high-affinity receptor used by adenoviruses Ad3, Ad7, Ad11 and Ad14. These serotypes represent key human pathogens causing respiratory and urinary tract infections. In epithelial cells, adenovirus binding of DSG-2 triggers events reminiscent of epithelial-to-mesenchymal transition, leading to transient opening of intercellular junctions. This opening improves access to receptors, for example, CD46 and Her2/neu, that are trapped in intercellular junctions. In addition to complete virions, dodecahedral particles (PtDds), formed by excess amounts of viral capsid proteins, penton base and fiber during viral replication, can trigger DSG-2-mediated opening of intercellular junctions as shown by studies with recombinant Ad3 PtDds. Our findings shed light on adenovirus biology and pathogenesis and may have implications for cancer therapy.


CryoEM structure of adenovirus type 3 fibre with desmoglein 2 shows an unusual mode of receptor engagement.

  • Emilie Vassal-Stermann‎ et al.
  • Nature communications‎
  • 2019‎

Attachment of human adenovirus (HAd) to the host cell is a critical step of infection. Initial attachment occurs via the adenoviral fibre knob protein and a cellular receptor. Here we report the cryo-electron microscopy (cryo-EM) structure of a <100 kDa non-symmetrical complex comprising the trimeric HAd type 3 fibre knob (HAd3K) and human desmoglein 2 (DSG2). The structure reveals a unique stoichiometry of 1:1 and 2:1 (DSG2: knob trimer) not previously observed for other HAd-receptor complexes. We demonstrate that mutating Asp261 in the fibre knob is sufficient to totally abolish receptor binding. These data shed new light on adenovirus infection strategies and provide insights for adenoviral vector development and structure-based design.


In vivo HSC transduction in rhesus macaques with an HDAd5/3+ vector targeting desmoglein 2 and transiently overexpressing cxcr4.

  • Hongjie Wang‎ et al.
  • Blood advances‎
  • 2022‎

We developed a new in vivo hematopoietic stem cell (HSC) gene therapy approach that involves only IV injections and does not require myeloablation/conditioning and HSC transplantation. In this approach, HSCs are mobilized from the bone marrow into the peripheral bloodstream and transduced with IV injected helper-dependent adenovirus (HDAd) vectors. A fraction of transduced HSCs returns to the bone marrow and persists there long term. Here, we report desmoglein 2 (DSG2) as a new receptor that can be used for in vivo HSC transduction. HDAd5/3+ vectors were developed that use DSG2 as a high-affinity attachment receptor, and in vivo HSC transduction and safety after IV injection of an HDAd5/3+ vector expressing green fluorescent protein (GFP) in granulocyte colony-stimulating factor/AMD3100 (plerixafor)-mobilized rhesus macaques were studied. Unlike previously used CD46-targeting HDAd5/35++ vectors, HDAd5/3+ virions were not sequestered by rhesus erythrocytes and therefore mediated ∼10-fold higher GFP marking rates in primitive HSCs (CD34+/CD45RA-/CD90+ cells) in the bone marrow at day 7 after vector injection. To further increase the return of in vivo transduced, mobilized HSCs to the bone marrow, we transiently expressed cxcr4 in mobilized HSCs from the HDAd5/3+ vector. In vivo transduction with an HDAd5/3+GFP/cxcr4 vector at a low dose of 0.4 × 1012 viral particles/kg resulted in up to 7% of GFP-positive CD34+/CD45RA-/CD90+ cells in the bone marrow. This transduction rate is a solid basis for in vivo base or prime editing in combination with natural or drug-induced expansion of edited HSCs. Furthermore, our study provides new insights into HSC biology and trafficking after mobilization in nonhuman primates.


Mapping of Adenovirus of serotype 3 fibre interaction to desmoglein 2 revealed a novel 'non-classical' mechanism of viral receptor engagement.

  • Emilie Vassal-Stermann‎ et al.
  • Scientific reports‎
  • 2018‎

High-affinity binding of the trimeric fibre protein to a cell surface primary receptor is a common feature shared by all adenovirus serotypes. Recently, a long elusive species B adenovirus receptor has been identified. Desmoglein 2 (DSG2) a component of desmosomal junction, has been reported to interact at high affinity with Human adenoviruses HAd3, HAd7, HAd11 and HAd14. Little is known with respect to the molecular interactions of adenovirus fibre with the DSG2 ectodomain. By using different DSG2 ectodomain constructs and biochemical and biophysical experiments, we report that the third extracellular cadherin domain (EC3) of DSG2 is critical for HAd3 fibre binding. Unexpectedly, stoichiometry studies using multi-angle laser light scattering (MALLS) and analytical ultra-centrifugation (AUC) revealed a non-classical 1:1 interaction (one DSG2 per trimeric fibre), thus differentiating 'DSG2-interacting' adenoviruses from other protein receptor interacting adenoviruses in their infection strategy.


Properties of Adenovirus Vectors with Increased Affinity to DSG2 and the Potential Benefits of Oncolytic Approaches and Gene Therapy.

  • Nora A Bahlmann‎ et al.
  • Viruses‎
  • 2022‎

Carcinomas are characterized by a widespread upregulation of intercellular junctions that create a barrier to immune response and drug therapy. Desmoglein 2 (DSG2) represents such a junction protein and serves as one adenovirus receptor. Importantly, the interaction between human adenovirus type 3 (Ad3) and DSG2 leads to the shedding of the binding domain followed by a decrease in the junction protein expression and transient tight junction opening. Junction opener 4 (JO-4), a small recombinant protein derived from the Ad3 fiber knob, was previously developed with a higher affinity to DSG2. JO-4 protein has been proven to enhance the effects of antibody therapy and chemotherapy and is now considered for clinical trials. However, the effect of the JO4 mutation in the context of a virus remains insufficiently studied. Therefore, we introduced the JO4 mutation to various adenoviral vectors to explore their infection properties. In the current experimental settings and investigated cell lines, the JO4-containing vectors showed no enhanced transduction compared with their parental vectors in DSG2-high cell lines. Moreover, in DSG2-low cell lines, the JO4 vectors presented a rather weakened effect. Interestingly, DSG2-negative cell line MIA PaCa-2 even showed resistance to JO4 vector infection, possibly due to the negative effect of JO4 mutation on the usage of another Ad3 receptor: CD46. Together, our observations suggest that the JO4 vectors may have an advantage to prevent CD46-mediated sequestration, thereby achieving DSG2-specific transduction.


Structure-based Design of JOC-x, a Conjugatable Tumor Tight Junction Opener to Enhance Cancer Therapy.

  • Ragan Pitner‎ et al.
  • Scientific reports‎
  • 2019‎

Disorganized intercellular junctions are critical for maintaining the integrity of solid epithelial tumors and prevent the infiltration of oncological therapies into the bulk of the malignancy. We have developed small, recombinant proteins which bind a critical junction protein, desmoglein 2, triggering the transient and specific opening of tumor tight junctions allowing for infiltration of the tumor with immune cells, oncolytic viruses, drugs, and other therapeutics. Our new molecule, JOC-x, is a promising candidate for a new class of tumor-targeting agents that accumulate both around and within tumors and remodel the tumor microenvironment. Native cysteines were removed from the parental protein, JO-4, followed by addition of a single cysteine to allow for convenient attachment of various payloads that can be targeted directly to the tumor. Our tumor-targeting protein exhibits high avidity, minimal aggregation, and is easily purified at good yields from E. coli. For proof of concept, we demonstrate effective conjugation to biotin as a model for flexible co-targeting, addition of metal ion chelators as models for imaging and radiotherapy, and linkage of the TLR3 agonist poly(I:C) as a model immune-oncologic agent. This second-generation cancer co-therapeutic protein is optimized for activity and primed for cGMP manufacture in preparation for upcoming clinical studies.


Translational development of a tumor junction opening technology.

  • Jiho Kim‎ et al.
  • Scientific reports‎
  • 2022‎

Our goal is to overcome treatment resistance in ovarian cancer patients which occurs in most cases after an initial positive response to chemotherapy. A central resistance mechanism is the maintenance of desmoglein-2 (DSG2) positive tight junctions between malignant cells that prevents drug penetration into the tumor. We have generated JO4, a recombinant protein that binds to DSG2 resulting in the transient opening of junctions in epithelial tumors. Here we present studies toward the clinical translation of c-JO4 in combination with PEGylated liposomal doxorubicin/Doxil for ovarian cancer therapy. A manufacturing process for cGMP compliant production of JO4 was developed resulting in c-JO4. GLP toxicology studies using material from this process in DSG2 transgenic mice and cynomolgus macaques showed no treatment-related toxicities after intravenous injection at doses reaching 24 mg/kg. Multiple cycles of intravenous c-JO4 plus Doxil (four cycles, 4 weeks apart, simulating the treatment regimen in the clinical trial) elicited antibodies against c-JO4 that increased with each cycle and were accompanied by elevation of pro-inflammatory cytokines IL-6 and TNFα. Pretreatment with steroids and cyclophosphamide reduced anti-c-JO4 antibody response and blunted cytokine release. Our data indicate acceptable safety of our new treatment approach if immune reactions are monitored and counteracted with appropriate immune suppression.


Role of Fiber Shaft Length in Tumor Targeting with Ad5/3 Vectors.

  • Maximilian Richter‎ et al.
  • Genes‎
  • 2022‎

Desmoglein 2 (DSG2) is overexpressed in many epithelial cancers and therefore represents a target receptor for oncolytic viruses, including Ad5/3-based viruses. For most Ad serotypes, the receptor-binding fiber is composed of tail, shaft, and knob domains. Here, we investigated the role of the fiber shaft in Ad5/3 tumor transduction in vitro and in human DSG2-transgenic mice carrying human DSG2high tumors. DSG2tg mice express DSG2 in a pattern similar to humans. We constructed Ad5/3L (with the "long" Ad5 shaft) and Ad5/3S (with the "short" Ad3 shaft) expressing GFP or luciferase. In in vitro studies we found that coagulation factor X, which is known to mediate undesired hepatocyte transduction of Ad5, enhances the transduction of Ad5/3(L), but not the transduction of Ad5/3(S). We therefore hypothesized that Ad5/3(S) would target DSG2high tumors while sparing the liver after intravenous injection. In vivo imaging studies for luciferase and analysis of luciferase activity in isolated organs, showed that Ad5/3(L) vectors efficiently transduced DSG2high tumors and liver but not normal epithelial tissues after intravenous injection. Ad5/3(S) showed minimal liver transduction, however it failed to transduce DSG2high tumors. Further modifications of the Ad5/3(S) capsid are required to compensate for the lower infectivity of Ad5/3(S) vectors.


Penton-dodecahedral particles trigger opening of intercellular junctions and facilitate viral spread during adenovirus serotype 3 infection of epithelial cells.

  • Zhuo-Zhuang Lu‎ et al.
  • PLoS pathogens‎
  • 2013‎

Human adenovirus serotypes Ad3, Ad7, Ad11, and Ad14 use the epithelial junction protein desmoglein 2 (DSG2) as a receptor for infection. During Ad infection, the fiber and penton base capsid proteins are produced in vast excess and form hetero-oligomers, called pentons. It has been shown for Ad3 that pentons self-assemble into penton-dodecahedra (PtDd). Our previous studies with recombinant purified Ad3 PtDd (produced in insect cells) showed that PtDd bind to DSG2 and trigger intracellular signaling resulting in the transient opening of junctions between epithelial cells. So far, a definitive proof for a function of Ad3 PtDd in the viral life cycle is elusive. Based on the recently published 3D structure of recombinant Ad3 PtDd, we generated a penton base mutant Ad3 vector (mu-Ad3GFP). mu-Ad3GFP is identical to its wild-type counterpart (wt-Ad3GFP) in the efficiency of progeny virus production; however, it is disabled in the production of PtDd. For infection studies we used polarized epithelial cancer cells or cell spheroids. We showed that in wt-Ad3GFP infected cultures, PtDd were released from cells before viral cytolysis and triggered the restructuring of epithelial junctions. This in turn facilitated lateral viral spread of de novo produced virions. These events were nearly absent in mu-Ad3GFP infected cultures. Our in vitro findings were consolidated in mice carrying xenograft tumors derived from human epithelial cancer cells. Furthermore, we provide first evidence that PtDd are also formed by another DSG2-interacting Ad serotype, the newly emerged, highly pathogenic Ad14 strain (Ad14p1). The central finding of this study is that a subgroup of Ads has evolved to generate PtDd as a strategy to achieve penetration into and dissemination in epithelial tissues. Our findings are relevant for basic and applied virology, specifically for cancer virotherapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: