Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 67 papers

TLX knockdown in the dorsal dentate gyrus of juvenile rats differentially affects adolescent and adult behaviour.

  • Danka A Kozareva‎ et al.
  • Behavioural brain research‎
  • 2019‎

The orphan nuclear receptor TLX is predominantly expressed in the central nervous system and is an important factor regulating the maintenance and self-renewal of neural stem cells from embryonic development through adulthood. In adolescence and adulthood, TLX expression is restricted to the neurogenic niches of the brain: the dentate gyrus of the hippocampus and the subventricular zone. The adolescent period is critical for maturation of the hippocampus with heightened levels of neurogenesis observed in rodents. Therefore, we investigated whether lentiviral silencing of TLX expression (TLX knockdown) in the dorsal dentate gyrus of juvenile rats incurred differential impairments in behaviour during late adolescence and adulthood. Our results showed that knockdown of TLX in the dorsal dentate gyrus led to a decrease in cell proliferation in the dorsal but not ventral dentate gyrus. At a behavioural level we observed differential effects in adolescence and adulthood across a number of parameters. A hyperactive phenotype was present in adolescent but not adult TLX knockdown rats, and an increase in immobility during adolescence and in swimming frequency during adulthood was observed in the forced swim test. There was an increased defecation frequency in the open field during adulthood but not adolescence. There were no changes in cognitive performance on hippocampus-dependent tasks or in anxiety-related behaviours. In conclusion, silencing of TLX in the dorsal dentate gyrus led to impairments in hippocampal-independent behaviours which either did not persist or were reversed during adulthood. The current data highlight the temporal importance and function of the nuclear receptor TLX during development.


Involvement of orexin receptors within the hippocampal dentate gyrus in morphine-induced reinstatement in food-deprived rats.

  • Mahsa Pourhamzeh‎ et al.
  • Behavioural brain research‎
  • 2019‎

The orexinergic system is found to cooperate in mediating stress-induced drug relapse. The orexinergic terminals innervate neurons of the hippocampal dentate gyrus (DG) which is a key structure in the maintenance and reinstatement of drug addiction. However, the specific contribution of intra-DG orexin receptors to stress-induced reinstatement has not been completely known. In the current study, the effects of intra-DG administration of SB334867, an orexin-1 receptor (OX1R) antagonist, and TCS OX2 29, an orexin-2 receptor (OX2R) antagonist, were investigated on the reinstatement induced by a sub-threshold dose of morphine and food deprivation (FD) stress. Adult male rats received different doses of SB334867 or TCS OX2 29 (3, 10, and 30 nM/0.5 μl DMSO 12%) bilaterally into the DG in separate groups, following the acquisition and extinction of morphine-induced conditioned place preference (CPP). Then, the reinstatement was evaluated by the 24 h FD stress and/or a sub-threshold dose of morphine (0.5 mg/kg, s.c.). CPP scores and locomotor activities were recorded during the test. The findings indicated that pre-treatment with the highest dose of SB334867 (30 nM) and two higher doses of TCS OX2 29 (10 and 30 nM) blocked the sub-threshold dose and FD stress-induced reinstatement of morphine. The effect of TCS OX2 29 on reduction of reinstatement was more pronounced than that of SB334867. It suggests a role for the orexin receptors, especially OX2R within the DG region in the stress-induced reinstatement of morphine-seeking behaviours in extinguished rats.


Basolateral amygdala stimulation plus water maze training restore dentate gyrus LTP and improve spatial learning and memory.

  • Daymara Mercerón-Martínez‎ et al.
  • Behavioural brain research‎
  • 2022‎

Synaptic plasticity is a key mechanism of neural plasticity involved in learning and memory. A reduced or impaired synaptic plasticity could lead to a deficient learning and memory. On the other hand, besides reducing hipocampal dependent learning and memory, fimbria-fornix lesion affects LTP. However, we have consistently shown that stimulation of the basolateral amygdala (BLA) 15 min after water maze training is able to improve spatial learning and memory in fimbria fornix lesioned rats while also inducing changes in the expression of plasticity-related genes expression in memory associated brain regions like the hippocampus and prefrontal cortex. In this study we test that hypothesis: whether BLA stimulation 15 min after water maze training can improve LTP in the hippocampus of fimbria-fornix lesioned rats. To address this question, we trained fimbria-fornix lesioned rats in water maze for four consecutive days, and the BLA was bilaterally stimulated 15 min after each training session.Our data show that trained fimbria-fornix lesioned rats develop a partially improved LTP in dentated gyrus compared with the non-trained fimbria-fornix lesioned rats. In contrast, dentated gyrus LTP in trained and BLA stimulated fimbria-fornix lesioned rats improved significantly compared to the trained fimbria-fornix lesioned rats, but was not different from that shown by healthy animals. BLA stimulation in non-trained FF lesioned rats did not improve LTP; instead produces a transient synaptic depression. Restoration of the ability to develop LTP by the combination of training and BLA stimulation would be one of the mechanisms involved in ameliorating memory deficits in lesioned animals.


The role of dentate gyrus dopaminergic receptors in the lateral hypothalamic-induced antinociception during persistent inflammatory pain in male rats.

  • Farbod Torkamand‎ et al.
  • Behavioural brain research‎
  • 2021‎

The lateral hypothalamus (LH) is one of the key brain areas involved in pain modulation. Also, the dentate gyrus (DG) of the hippocampus expresses various receptors, including dopaminergic receptors. Dopaminergic receptors play a key role in pain transmission and modulation within the brain. The present study aimed to investigate the involvement of DG dopaminergic receptors in the LH-induced antinociception during the presence of inflammatory pain. Male Wistar rats were used in this study. Cannulae were unilaterally implanted in their skull for microinjections into the LH and DG. The LH was chemically stimulated by carbachol injection (250 nM/0.5 μl saline). In separate groups, different doses (0.25, 1, and 4 μg/0.5 μl vehicle) of the D1- and D2-like dopamine receptor antagonists (SCH23390 and Sulpiride, respectively) were microinjected into the DG, 5 min prior to intra-LH injection of carbachol. Five min after the second injection, formalin test as a persistent inflammatory pain model in animals was done in all rats. The results revealed that carbachol could induce antinociception following formalin injection into rat's hind paw. The 4 μg dose of both antagonists significantly reduced the LH stimulation-induced antinociception in both phases of formalin pain responses. Although the 1 μg dose of sulpiride significantly reduced antinociception during both phases, 1 μg SCH23390 could only reduce this antinociception during the late phase. These findings demonstrate the involvement of DG dopaminergic receptors in the LH-induced antinociception. The results also suggest that the effectiveness of DG dopaminergic receptors is more pronounced during the late phase of formalin-induced pain responses.


Temporary inactivation of interpeduncular nucleus impairs long but not short term plasticity in the perforant-path dentate gyrus synapses in rats.

  • Leila Khatami‎ et al.
  • Behavioural brain research‎
  • 2020‎

The interconnectivity of the hippocampus, interpeduncular nucleus (IPN) and several brain structures which are involved in modulating hippocampal theta rhythm activity makes a complicated dynamic network of interconnected regions and highlights the role of IPN in the hippocampal dependent learning and memory. In the present study we aimed to address whether IPN is involved in the perforant path-dentate gyrus (PPDG) short term and long term synaptic plasticity in rats. To silent IPN transiently, lidocaine was injected through the implanted cannula above the IPN. To evaluate short term plasticity, paired pulses stimulation of PPDG synapses were used upon IPN temporary inactivation. Furthermore, long term plasticity was investigated by measuring the induction and maintenance of PPDG synapses long term potentiation (LTP) after high frequency stimulation (HFS) of the mentioned pathway following to IPN inactivation. The results showed that IPN reversible inactivation had no effect on short term plasticity of PPDG synapses. However, IPN inactivation before the PPDG high frequency stimulation could significantly suppress both the population spike (PS) and fEPSP-LTP induction compared to the saline group. Conversely, IPN inactivation had no significant effect on maintenance of both PS-LTP and fEPSP-LTP. All together our study suggests the contribution of IPN in the PPDG synaptic plasticity and excitability of DG granule cells which could be through direct and/or indirect pathways from IPN to the hippocampus.


Role of orexinergic receptors in the dentate gyrus of the hippocampus in the acquisition and expression of morphine-induced conditioned place preference in rats.

  • Mohammadreza Shirazy‎ et al.
  • Behavioural brain research‎
  • 2020‎

Orexinergic projections derived from the lateral hypothalamus (LH) play a crucial role in the acquisition and expression of morphine-conditioned place preference (CPP). It has been demonstrated in previous that orexinergic receptors are expressed in the dentate gyrus (DG) region of the hippocampus, which receives projections of LH orexinergic neurons. This study examined the effects of intra-DG orexin-1 (OX1) and orexin-2 (OX2) receptor antagonists on the acquisition and expression of CPP induced by morphine. Two separate cannulas were inserted bilaterally into the DG, and a CPP paradigm was performed. The CPP scores and locomotor activities were recorded using Ethovision software. The results showed that intra-DG microinjection of SB334867 as a selective OX1R antagonist (0.5, 2.5, 12.5 nM/0.5 μl DMSO) or TCSOX229 as a selective OX2R antagonist (0.5, 2.5, 12.5 nM/0.5 μl DMSO) before a morphine subcutaneous injection (5 mg/kg) during a three-day conditioning phase dose-dependently represses the acquisition of morphine-induced CPP in rats. Furthermore, these antagonists reduced the CPP scores in the expression phase. Consequently, it was established that orexinergic receptors in the DG are involved in the acquisition and expression of morphine-induced CPP.


Indices of dentate gyrus neurogenesis are unaffected immediately after or following withdrawal from morphine self-administration compared to saline self-administering control male rats.

  • Sarah E Bulin‎ et al.
  • Behavioural brain research‎
  • 2020‎

Opiates - including morphine - are powerful analgesics with high abuse potential. In rodents, chronic opiate exposure or self-administration negatively impacts hippocampal-dependent function, an effect perhaps due in part to the well-documented opiate-induced inhibition of dentate gyrus (DG) precursor proliferation and neurogenesis. Recently, however, intravenous (i.v.) morphine self-administration (MSA) was reported to enhance the survival of new rat DG neurons. To reconcile these disparate results, we used rat i.v. MSA to assess 1) whether a slightly-higher dose MSA paradigm also increases new DG neuron survival; 2) how MSA influences cells in different stages of DG neurogenesis, particularly maturation and survival; and 3) if MSA-induced changes in DG neurogenesis persist through a period of abstinence. To label basal levels of proliferation, rats received the S-phase marker bromodeoxyuridine (BrdU, i.p.) 24 -h prior to 21 days (D) of i.v. MSA or saline self-administration (SSA). Either immediately after SA (0-D) or after 4 weeks in the home cage (28-D withdrawal), stereology was used to quantify DG proliferating precursors (or cells in cell cycle; Ki67+ cells), neuroblast/immature neurons (DCX+ cells), and surviving DG granule cells (BrdU+ cells). Analysis revealed the number of DG cells immunopositive for these neurogenesis-relevant markers was similar between MSA and SSA rats at the 0-D or 28-D timepoints. These negative data highlight the impact experimental parameters, timepoint selection, and quantification approach have on neurogenesis results, and are discussed in the context of the large literature showing the negative impact of opiates on DG neurogenesis.


Deficits in LTP and recognition memory in the genetically hypertensive rat are associated with decreased expression of neurotrophic factors and their receptors in the dentate gyrus.

  • Amy Hennigan‎ et al.
  • Behavioural brain research‎
  • 2009‎

We have previously reported that a genetically hypertensive strain of Wistar rat (GH), is deficient in nerve growth factor (NGF) and Trk receptors in dentate gyrus and that these deficits are accompanied by impaired expression of long-term potentiation (LTP) in perforant path-granule cell synapses. Here we confirm this deficit in LTP and report that this strain of rat also displays impairments in long-term recognition memory when compared with normotensive controls. Further analysis of neurotrophin expression in dentate gyrus confirmed the previously-reported deficit in NGF and revealed a decrease in expression of brain-derived neurotrophic factor (BDNF), but not neurotrophin 3 (NT3) or neurotrophin 4 (NT4), in GH rats. These alterations in ligand expression were accompanied by changes in Trk receptor expression; specifically, a decrease in expression of TrkA and TrkB, but not TrkC, in the dentate gyrus of GH, compared with normotensive, rats. We conclude that the impairments in LTP and learning and memory observed in the GH strain are associated with aberrant expression of specific neurotrophic factors and their receptors in the dentate gyrus, adding weight to the evidence indicating a role for these proteins in several forms of synaptic plasticity.


Dehydroepiandrosterone increases the number and dendrite maturation of doublecortin cells in the dentate gyrus of middle age male Wistar rats exposed to chronic mild stress.

  • J J Herrera-Pérez‎ et al.
  • Behavioural brain research‎
  • 2017‎

Aging increases the vulnerability to stress and risk of developing depression. These changes have been related to a reduction of dehydroepiandrosterone (DHEA) levels, an adrenal steroid with anti-stress effects. Also, adult hippocampal neurogenesis decreases during aging and its alteration or impaired is related to the development of depression. Besides, it has been hypothesized that DHEA increases the formation of new neurons. However, it is unknown whether treatment with DHEA in aging may stimulate the dendrite maturation of newborn neurons and reversing depressive-like signs evoked by chronic stress exposure. Here aged male rats (14 months old) were subjected to a scheme of chronic mild stress (CMS) during six weeks, received a treatment with DHEA from the third week of CMS. Changes in body weight and sucrose preference (SP) were measured once a week. DHEA levels were measured in serum, identification of doublecortin-(DCX)-, BrdU- and BrdU/NeuN-labeled cells was done in the dentate gyrus of the hippocampus. CMS produced a gradual reduction in the body weight, but no changes in the SP were observed. Treatment enhanced levels of DHEA, but lack of recovery on body weight of stressed rats. Aging reduced the number of DCX-, BrdU- and BrdU/NeuN- cells but DHEA just significantly increased the number of DCX-cells in rats under CMS and controls, reaching levels of young non-stressed rats (used here as a reference of an optimal status of health). In rats under CMS, DHEA facilitated dendritic maturation of immature new neurons. Our results reveal that DHEA improves neural plasticity even in conditions of CMS in middle age rats. Thus, this hormone reverted the decrement of DCX-cells caused during normal aging.


Nitric oxide impairs spatial learning and memory in a rat model of Alzheimer's disease via disturbance of glutamate response in the hippocampal dentate gyrus during spatial learning.

  • Peng Ren‎ et al.
  • Behavioural brain research‎
  • 2022‎

Nitric oxide (NO)-dependent pathways may play a significant role in the decline of synaptic and cognitive functions in Alzheimer's disease (AD). However, whether NO in the hippocampal dentate gyrus (DG) is involved in the spatial learning and memory impairments of AD by affecting the glutamate (Glu) response during these processes is not well-understood. Here, we prepared an AD rat model by long-term i.p. of D-galactose into ovariectomized rats, and then the effects of L-NMMA (a NO synthase inhibitor) on Glu concentration and amplitude of field excitatory postsynaptic potential (fEPSP) were measured in the DG region during the Morris water maze (MWM) test in freely-moving rats. During the MWM test, compared with the sham group, the escape latency was increased in the place navigation trial, and the percentage of time spent in target quadrant and the number of platform crossings were decreased in the spatial probe trial, in addition, the increase of fEPSP amplitude in the DG was significantly attenuated in AD group rats. L-NMMA significantly attenuated the spatial learning and memory impairment in AD rats, and reversed the inhibitory effect of AD on increase of fEPSP amplitude in the DG during the MWM test. In sham group rats, the Glu level in the DG increased significantly during the MWM test, and this response was markedly enhanced in AD rats. Furthermore, the response of Glu in the DG during spatial learning was recovered by microinjection of L-NMMA into the DG. Our results suggest that NO in the DG impairs spatial learning and memory and related synaptic plasticity in AD rats, by disturbing the Glu response during spatial learning.


A combination of running and memantine increases neurogenesis and reduces activation of developmentally-born dentate granule neurons in rats.

  • Shaina P Cahill‎ et al.
  • Behavioural brain research‎
  • 2019‎

During hippocampal-dependent memory formation, sensory signals from the neocortex converge in the dentate gyrus. It is generally believed that the dentate gyrus decorrelates inputs in order to minimize interference between codes for similar experiences, often referred to as pattern separation. The proportion of dentate neurons that are activated by experience is therefore likely to impact how memories are stored and separated. Emerging evidence from mouse models suggests that adult-born neurons can both increase and decrease activity levels in the dentate gyrus. However, the conditions that determine the direction of this modulation, and whether it occurs in other species, remains unclear. Furthermore, since the dentate gyrus is composed of a heterogeneous population of cells that are born throughout life, newborn neurons may not modulate all cells equally. We aimed to investigate whether adult neurogenesis in rats regulates activity in dentate gyrus neurons that are born at the peak of early postnatal development. Adult neurogenesis was increased by subjecting rats to an alternating running and memantine treatment schedule, and it was decreased with a transgenic GFAP-TK rat model. Activity was measured by Fos expression in BrdU+ cells after rats explored a novel environment. Running+memantine treatment increased adult neurogenesis by only 17%, but completely blocked experience-dependent Fos expression. In contrast, GFAP-TK rats had a 68% reduction in adult neurogenesis but normal experience-dependent Fos expression. The inconsistent relationship between neurogenesis and Fos expression suggests that neurogenesis does not regulate DG activity during exploration of a novel environment. Nonetheless, running and memantine may benefit disorders where there is elevated activity in the dentate gyrus, such as anxiety and age-related memory impairments.


Differential effects of chronic stress on anxiety-like behavior and contextual fear conditioning in the TgF344-AD rat model of Alzheimer's disease.

  • Nathan S Pentkowski‎ et al.
  • Behavioural brain research‎
  • 2022‎

Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder that leads to severe cognitive and functional impairments. Many AD patients also exhibit neuropsychiatric symptoms, such as anxiety and depression, prior to the clinical diagnosis of dementia. Chronic stress is associated with numerous adverse health consequences and disease states, and AD patients exhibit altered stress systems. Thus, stress may represent a causal link between neuropsychiatric symptoms and AD. To address this possibility, we examined the effects of chronic stress in the TgF344-AD rat model that co-expresses the mutant human amyloid precursor protein (APPsw) and presenilin 1 (PS1ΔE9) genes. Adult male transgenic (Tg+) and wild-type (WT) rats (6-7.5 months of age), with and without a history of chronic restraint stress, were tested for footshock-induced conditioned fear and for anxiety-like behavior in the elevated plus-maze. We found that non-stressed Tg+ rats showed increased anxiety-like behavior compared to non-stressed WT rats. In contrast, Tg+ and WT rats did not differ in levels of freezing immediately following footshock or during contextual re-exposure. Additionally, stressed Tg+ rats were not significantly different from stressed WT rats on any measures of anxiety or fear. Thus, while stress has been linked as a risk factor for AD-related pathology, it appears from the present findings that two weeks of daily restraint stress did not further enhance anxiety- or fear-like behaviors in TgF344-AD rats.


Lesions within the head direction system reduce retrosplenial c-fos expression but do not impair performance on a radial-arm maze task.

  • Seralynne D Vann‎
  • Behavioural brain research‎
  • 2018‎

The lateral mammillary nuclei are a central structure within the head direction system yet there is still relatively little known about how these nuclei contribute to spatial performance. In the present study, rats with selective neurotoxic lesions of the lateral mammillary nuclei were tested on a working memory task in a radial-arm maze. This task requires animals to distinguish between eight radially-oriented arms and remember which arms they have entered within a session. Even though it might have been predicted that this task would heavily tax the head direction system, the lesion rats performed equivalently to their surgical controls on this task; no deficit emerged even when the task was made more difficult by rotating the maze mid-way through testing in order to reduce reliance on intramaze cues. Rats were subsequently tested in the dark to increase the use of internally generated direction cues but the lesion rats remained unimpaired. In contrast, the lateral mammillary nuclei lesions were found to decrease retrosplenial c-Fos levels. These results would suggest that the head direction system is not required for the acquisition of the standard radial-arm maze task. It would also suggest that small decreases in retrosplenial c-Fos are not sufficient to produce behavioural impairments.


Forgetting at biologically realistic levels of neurogenesis in a large-scale hippocampal model.

  • Lina M Tran‎ et al.
  • Behavioural brain research‎
  • 2019‎

Neurogenesis persists throughout life in the dentate gyrus region of the mammalian hippocampus. Computational models have established that the addition of neurons degrades existing memories (i.e., produces forgetting). These predictions are supported by empirical observations in rodents, where post-training increases in neurogenesis also promote forgetting of hippocampus-dependent memories. However, in these computational models which use 10-1,000 neurons to represent the dentate gyrus, forgetting is only observed at rates of new neuron addition that greatly exceed adult neurogenesis rates observed in vivo. In order to address this, here we generated an artificial neural network which incorporated more realistic features of the hippocampus - including increased network size (with up to 20,000 dentate gyrus neurons), sparse activity, and sparse connectivity - features that were not present in earlier models. In addition, we explored how properties of new neurons - their connectivity, excitability, and plasticity - impact forgetting using a pattern categorization task. Our results revealed that neurogenic networks forget previously learned input-output pattern associations. This forgetting predicted a performance enhancement in subsequent conflictual learning, compared to static networks (with no added neurons). These effects were especially sensitive to changes in increased output connectivity and excitability of new neurons. Crucially, forgetting was observed at much lower rates of neurogenesis in larger networks, with the addition of as little as 0.2% of the total DG population sufficient to induce forgetting.


Low intensity, long term exposure to tobacco smoke inhibits hippocampal neurogenesis in adult mice.

  • Dávid Csabai‎ et al.
  • Behavioural brain research‎
  • 2016‎

Previous data have shown that high dose of nicotine administration or tobacco smoke exposure can reduce cell formation and the survival rate of adult-born neurons in the dentate gyrus. Here, we subjected adult mice to low intensity cigarette smoke exposure over long time periods. We did a 2×30min/day smoke exposure with two cigarettes per occasion over 1- or 2-months. Subsequently, we carried out a systematic quantitative histopathological analysis to assess the number of newborn neurons in the dentate gyrus. To investigate cell proliferation, the exogenous marker 5-bromo-2'-deoxyuridine (BrdU) was administered on the last experimental day and animals were sacrificed 2h later. To investigate the effect of tobacco smoke on the population of immature neurons, we quantified the number of doublecortin-positive (DCX+) neurons in the same animals. We found that exposing animals to cigarette smoke for 1- or 2-months had no influence on cell proliferation rate, but significantly reduced the number of DCX-positive immature neurons. Our tobacco smoke exposure regimen caused no substantial changes in respiratory functions, but histopathological analysis of the pulmonary tissue revealed a marked perivascular/peribronchial edema formation after 1-month and signs of chronic pulmonary inflammation after 2-months of cigarette smoke exposure. These data demonstrate that even mild exposure to cigarette smoke, without significantly affecting respiratory functions, can have a negative effect on adult-born neurons in the dentate gyrus, when applied over longer time periods. Our data indicate that besides nicotine other factors, such as inflammatory mediators, may also contribute to this effect.


Functional differentiation and cooperation among the hippocampal subregions in rats to effect spatial memory processes.

  • Kana Okada‎ et al.
  • Behavioural brain research‎
  • 2009‎

We investigated the roles of the hippocampal subregions and intrahippocampal networks in effecting spatial reference and working processes. The results showed that the dentate gyrus plays a key role in encoding both types of spatial memory. Lesions in the dentate gyrus caused severe impairment in the acquisition of the Morris water maze and delayed matching-to-place tasks as compared to those in the other hippocampal subregions (Exp. 1). Further, there was functional cooperation between CA3 and CA1 via the Schaffer collaterals and the hippocampal commissure in the performance of both types of spatial memory tasks. Among the rats with intact hippocampal commissure, those with both contralateral and ipsilateral CA1/CA3 lesions showed a similar performance (Exp. 2A); however, among the rats with transected hippocampal commissure, those with the contralateral CA1/CA3 lesions showed a more disruptive performance than the rats with the ipsilateral CA1/CA3 lesions (Exp. 2B). This study suggests that the hippocampus is the functional unit for spatial reference and working memory processes, including differential functions and functional cooperation among the hippocampal subregions.


Chemotherapy drug thioTEPA exacerbates stress-induced anhedonia and corticosteroid responses but not impairment of hippocampal cell proliferation in adult mice.

  • Courtney L Wilson‎ et al.
  • Behavioural brain research‎
  • 2013‎

Cancer patients often suffer long-lasting affective and cognitive impairments as a result of chemotherapy treatment. Previous work in our lab has shown deficits in learning and memory and hippocampal cell proliferation in mice lasting up to 20 weeks following acute administration of thioTEPA. In this study, the effects of thioTEPA in conjunction with effects of chronic stress on depression-related behavior were examined in C57BL/6J mice, 12 weeks following thioTEPA administration. Chemotherapy-treated mice showed a diminished sucralose preference compared to controls that was further exacerbated after 2 weeks of daily restraint stress. This intensifying effect was not observed in the Porsolt forced swim test. Moreover, stress-induced corticosteroid responses were exaggerated in thioTEPA-treated mice. Cell proliferation in the dentate gyrus of the hippocampus was also impaired similarly by prior thioTEPA treatment and by daily restraint stress, with no additive effect. Results suggest that some depression-related impairments may be exacerbated by chemotherapy treatment through altered corticosteroid regulation.


Cognitive dysfunction and hippocampal changes in experimental type 1 diabetes.

  • Edgardo O Alvarez‎ et al.
  • Behavioural brain research‎
  • 2009‎

Type 1 diabetes (T1D) is accompanied by a "diabetic encephalopathy" including hypersensitivity to stress, increased risk of stroke, dementia and cognitive impairment. In previous works we reported several brain alterations including a strong decrease in hippocampal proliferation and survival in both spontaneous and streptozotocin-induced models of experimental T1D. The aim of this study was to explore in streptozotocin-treated mice and other parameters associated to mild neurodegeneration in the dentate gyrus and the potential correlation with behavioural changes. The neurogenic status, measured by doublecortin (DCX) expression, showed an important decline in the number of positive cells in the subgranular zone (SGZ). However, neuronal migration was not affected. We found a marked enhancement of intracellular lipofuscin deposits, characteristic of increased oxidative stress and aging in both, the hilus and the SGZ and granular cell layer (GCL). Diabetic mice showed a significant impairment in learning and memory tests, exhibiting a higher latency to show an escape response and a poorer learning efficiency of an active avoiding response compared with control mice. Both, exploratory and non-exploratory activities in a conflictive environment in the asymmetric elevated plus maze were not affected by the diabetic condition. In conclusion, experimental diabetes showed clear signs of changes in the dentate gyrus, changes similar to those present in the aging process. Correlatively, these alterations were in line with a reduced performance in learning and memory tests. The mechanism that could potentially link neural and behavioural disturbances is not yet fully comprehended.


Contextual processing elicits sex differences in dorsal hippocampus activation following footshock and context fear retrieval.

  • Lorianna M Colon‎ et al.
  • Behavioural brain research‎
  • 2020‎

Establishing a contextual representation of an environment places specific spatial-temporal processing demands on the mammalian hippocampus, a region showing sex-differences in processing capabilities. However, evidence for sex differences in these processing demands during contextual fear learning remains limited. Here, we examined the relationship among contextual processing, timing of footshock, and activation of the dorsal hippocampus and basolateral amygdalar nuclei (BLA) in male and female mice (C57Bl/6 J). We modified the initial exposure time to the conditioning context prior to administration, or not, of a single footshock. We then quantified Fos- ir neurons activated by acquisition or retrieval of contextual fear memories in the rostral half of the dorsal CA1 (proximal - distal regions), CA3, Dentate Gyrus and basolateral amygdalar nuclei corresponding to atlas levels of the Allen Reference Atlas. In experiment 1, we found that sex differences in context elicited freezing were evident at the longest context placement-to-shock interval and that context fear retrieval with increasing contextual exposure periods increased CA1 Fos-ir in males, but not females. In experiment 2, we observed that an aversive footshock in males potentiated CA1 activation, while it downregulated CA1 activation in females. We also found that an aversive footshock independent of sex moderated Dentate Gyrus activation that normally showed increased activation with greater context exposure periods. Lastly, we identified a heightened responsiveness in BLA neurons to both footshock and length of context exposure in females compared to males. Overall, our findings suggest that sex differences in contextual fear conditioning may arise from marked sex differences in the contextual processing demands of the dorsal hippocampus subfields largely modulated by aversive outcomes.


Regular voluntary exercise cures stress-induced impairment of cognitive function and cell proliferation accompanied by increases in cerebral IGF-1 and GST activity in mice.

  • Sanae Nakajima‎ et al.
  • Behavioural brain research‎
  • 2010‎

Chronic stress impairs cognitive function and hippocampal neurogenesis. This impairment is attributed to increases in oxidative stress, which result in the accumulation of lipid peroxide. On the other hand, voluntary exercise enhances cognitive function, hippocampal neurogenesis, and antioxidant capacity in normal animals. However, the effects of voluntary exercise on cognitive function, neurogenesis, and antioxidants in stressed mice are unclear. This study was designed to investigate whether voluntary exercise cures stress-induced impairment of cognitive function accompanied by improvement of hippocampal neurogenesis and increases in antioxidant capacity. Stressed mice were exposed to chronic restraint stress (CRS), which consisted of 12h immobilization daily and feeding in a small cage, for 8 weeks. Exercised mice were allowed free access to a running wheel during their exposure to CRS. At the 6th week, cognitive function was examined using the Morris water maze (MWM) test. Daily voluntary exercise restored stress-induced impairment of cognitive function and the hippocampal cell proliferation of newborn cells but not cell survival. Voluntary exercise increased insulin-like growth factor 1 (IGF-1) protein and mRNA expression in the cerebral cortex and liver, respectively. In addition, CRS resulted in a significant increase in the number of 4-hydrosynonenal (4-HNE)-positive cells in the hippocampal dentate gyrus; whereas, voluntary exercise inhibited it and enhanced glutathione s-transferases (GST) activity in the brain. These findings suggest that voluntary exercise attenuated the stress-induced impairment of cognitive function accompanied by improvement of cell proliferation in the dentate gyrus. This exercise-induced improvement was attributed to exercise-induced enhancement of IGF-1 protein and GST activity in the brain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: