Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Therapeutic Effect of Rumex japonicus Houtt. on DNCB-Induced Atopic Dermatitis-Like Skin Lesions in Balb/c Mice and Human Keratinocyte HaCaT Cells.

  • Hye Ryeon Yang‎ et al.
  • Nutrients‎
  • 2019‎

Rumex japonicus Houtt. (RJ) is traditionally used in folk medicines to treat patients suffering from skin disease in Korea and other parts of East Asia. However, the beneficial effect of RJ extract on atopic dermatitis (AD) has not been thoroughly examined. Therefore, this study aimed to investigate the anti-inflammatory effects of RJ on AD in vitro and in vivo. Treatment with RJ inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) as well as the activation of nuclear factor-kappa B (NF-κB) in tumor necrosis factor-α (TNF-α) stimulated in HaCaT cells. The five-week-old Balb/c mice were used as an AD-like mouse model by treating them with 1-chloro-2, 4-dinitrobenzene (DNCB). Topical administration of RJ to DNCB-treated mice significantly reduced clinical dermatitis severity, epidermal thickness, and decreased mast cell and eosinophil infiltration into skin and ear tissue. These results suggest that RJ inhibits the development of AD-like skin lesions by regulating the skin inflammation responses in HaCaT cells and Balb/c mice. Thus, RJ may be a potential therapeutic agent for AD.


Vitamin D2 suppresses amyloid-β 25-35 induced microglial activation in BV2 cells by blocking the NF-κB inflammatory signaling pathway.

  • Suchismita Raha‎ et al.
  • Life sciences‎
  • 2016‎

Present emerging world is emphasizing the implication of vitamin D deficiency associated with development of inflammation and neurodegenerative disorder like Alzheimer's disease (AD). The chief neuropathological hallmark of AD is aggregation of amyloid-beta (Aβ) peptides surrounding microglial cells in human brain. Microglial activation plays a key role in inflammatory response and neuronal injury. Naturally abundant vitamin D2 (VD2) exhibiting anti-inflammatory activities are yet to explore more. This study has investigated the inhibitory effect of VD2 on inflammatory activities of BV2 microglial cells.


Comparative Proteomic Profiling of Tumor-Associated Proteins in Human Gastric Cancer Cells Treated with Pectolinarigenin.

  • Ho Jeong Lee‎ et al.
  • Nutrients‎
  • 2018‎

Pectolinarigenin (PEC), a natural flavonoid that is present in citrus fruits, has been reported to exhibit antitumor effects in several cancers. Though the mechanism of PEC-induced cytotoxicity effects has been documented, the proteomic changes that are associated with the cellular response to this flavonoid are poorly understood in gastric cancer cells. In this study, a comparative proteomic analysis was performed to identify proteins associated with PEC-induced cell death in two human gastric cancer cell lines: AGS and MKN-28. Two-dimensional gel electrophoresis (2-DE) revealed a total of 29 and 56 protein spots with significant alteration were screened in AGS and MKN-28 cells respectively. In total, 13 (AGS) and 39 (MKN28) proteins were successfully identified by mass spectrometry from the differential spots and they are known to be involved in signal transduction, apoptosis, transcription and translation, cell structural organization, and metabolism, as is consistent with multiple effects of PEC on tumor cells. Notably, novel target proteins like Probable ATP-dependent RNA helicase DDX4 (DDX4) and E3 ubiquitin-protein ligase LRSAM1 (LRSAM1) along with the commonly differential expressed proteins on both the cell lines that are treated with PEC were confirmed by immunoblotting. The DDX4 accelerates cell cycle progression by abrogating the G2 checkpoint when overexpressed in cancer cells, while the aberrant expression of LRSAM1 may be involved in the cancer pathology. Thus, proteomic analysis provides vital information about target proteins that are important for PEC-induced cell death in gastric cancer cells.


Anthocyanins Derived from Vitis coignetiae Pulliat Contributes Anti-Cancer Effects by Suppressing NF-κB Pathways in Hep3B Human Hepatocellular Carcinoma Cells and In Vivo.

  • Min Jeong Kim‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

We previously demonstrated that anthocyanins from the fruits of Vitis coignetiae Pulliat (AIMs) induced the apoptosis of hepatocellular carcinoma cells. However, many researchers argued that the concentrations of AIMs were too high for in vivo experiments. Therefore, we performed in vitro at lower concentrations and in vivo experiments for the anti-cancer effects of AIMs. AIMs inhibited the cell proliferation of Hep3B cells in a dose-dependent manner with a maximum concentration of 100 µg/mL. AIMs also inhibited the invasion and migration at 100 µg/mL concentration with or without the presence of TNF-α. To establish the relevance between the in vitro and in vivo results, we validated their effects in a Xenograft model of Hep3B human hepatocellular carcinoma cells. In the in vivo test, AIMs inhibited the tumorigenicity of Hep3B cells in the xenograft mouse model without showing any clinical signs of toxicity or any changes in the body weight of mice. AIMs inhibited the activation NF-κB and suppressed the NF-κB-regulated proteins, intra-tumoral microvessel density (IMVD) and the Ki67 activity of Hep3B xenograft tumors in athymic nude mice. In conclusion, this study indicates that AIMs have anti-cancer effects (inhibition of proliferation, invasion, and angiogenesis) on human hepatocellular carcinoma xenograft through the inhibition of NF-κB and its target protein.


Proteome Profiling of Membrane-Free Stem Cell Components by Nano-LS/MS Analysis and Its Anti-Inflammatory Activity.

  • Venu Venkatarame Gowda Saralamma‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2019‎

The use of adipose-derived stem cells (ADSCs) to enhance wound healing and tissue regeneration is progressively being accepted. Proteomic profiling of cultured ADSCs by mass spectrometry (MS) is a valuable tool to determine the identity of the proteins involved in multiple pathways, which make these ADSCs unique. In the current study, Nano-LC-MS/MS analysis was implemented on the membrane-free stem cell component (MFSCC), and the MS analysis revealed the presence of 252 proteins, that are involved in several biological functions, like metabolic process, biological regulation, developmental process, cell proliferation, and many more. Furthermore, bioinformatic analyses of the identified proteins in MFSCC found them to be involved in versatile pathways, like integrin pathway and wound healing response-related pathways. In addition, we also investigated the anti-inflammatory effects of MFSCC on lipopolysaccharide (LPS) stimulated mouse macrophage (RAW264.7) cells. The cell cytotoxicity of MFSCC was measured using MTT and LDH assays, the production of nitric oxide (NO) was measured by the Griess assay, and the protein expression levels of inducible nitric oxide (iNOS) and cyclooxygenase (COX-2) were examined by western blot analysis. The results showed that MFSCC concentrations ranging from 0.1 to 3 μg/mL did not show any significant cytotoxicity in LPS-induced RAW264.7 cells. Treatment with MFSCC of LPS-stimulated RAW264.7 cells significantly suppressed the production of NO and the expression of iNOS and COX-2 proteins related to inflammation. The present findings lead to a better understanding of the therapeutic potential of MFSCC and strongly promote it for the future clinical development of novel non-cell-based stem cell therapeutics.


Pectolinarigenin Induced Cell Cycle Arrest, Autophagy, and Apoptosis in Gastric Cancer Cell via PI3K/AKT/mTOR Signaling Pathway.

  • Ho Jeong Lee‎ et al.
  • Nutrients‎
  • 2018‎

Pectolinarigenin (PEC), a natural flavonoid present in Cirsium chanroenicum and in some species of Citrus fruits, has various pharmacological benefits such as anti-inflammatory and anti-cancer activities. In the present study, we investigated the anti-cancer mechanism of PEC induced cell death caused by autophagy and apoptosis in AGS and MKN28 human gastric cancer cells. The PEC treatment significantly inhibited the AGS and MKN28 cell growth in a dose-dependent manner. Further, PEC significantly elevated sub-G1 phase in AGS cells and G2/M phase cell cycle arrest in both AGS and MKN28 cells. Apoptosis was confirmed by Annexin V and Hoechst 33342 fluorescent staining. Moreover, Immunoblotting results revealed that PEC treatment down-regulated the inhibitor of apoptosis protein (IAP) family protein XIAP that leads to the activation of caspase-3 thereby cleavage of PARP (poly-ADP-ribose polymerase) in both AGS and MKN28 cells in a dose-dependent manner. The autophagy-inducing effect was indicated by the increased formation of acidic vesicular organelles (AVOs) and increased protein levels of LC3-II conversion in both AGS and MKN28 cells. PEC shows the down regulation of PI3K/AKT/mTOR pathway which is a major regulator of autophagic and apoptotic cell death in cancer cells that leads to the down-regulation of p-4EBP1, p-p70S6K, and p-eIF4E in PEC treated cells when compared with the untreated cells. In conclusion, PEC treatment might have anti-cancer effect by down-regulation of PI3K/AKT/mTOR pathway leading to G2/M phase cell cycle arrest, autophagic and apoptotic cell death in human gastric cancer cells. Further studies of PEC treatment can support to develop as a potential alternative therapeutic agent for human gastric carcinoma.


Inhibition of IAP's and activation of p53 leads to caspase-dependent apoptosis in gastric cancer cells treated with Scutellarein.

  • Venu Venkatarame Gowda Saralamma‎ et al.
  • Oncotarget‎
  • 2018‎

Gastric cancer is the fifth most common cancer and the third leading cause of cancer deaths worldwide. South Korea is in first place with 9,180 death alone attributed to gastric cancer in 2013. Plenty of literature suggests the evasion of apoptosis is implicated in neurodegeneration, autoimmune diseases, and tumors development due to dysregulation in the apoptotic mechanism. Reduced apoptosis or its resistance in cancer cells plays a significant role in carcinogenesis. It's imperative to understand apoptosis, which provides the basis for novel targeted therapies that can induce cancer cell death or sensitize them to cytotoxic agents by regulating key factors like IAPs, MDM2, p53, caspases and much more. Studies have demonstrated that Scutellarein have the ability to inhibit several cancer cells by inducing apoptosis with both: Scutellarein monomers as well as scutellarein containing flavonoids. MTT results revealed that scutellarein inhibited cell viability in both dose and time dependent manner. Flow cytometry and western blot analysis showed that scutellarein induces apoptosis in both AGS and SNU-484 human gastric cancer cells and G2/M phase cell cycle arrest in SNU-484 cells. This study demonstrated that the Scutellarein on AGS and SNU-484 cells significantly inhibits cell proliferation and induces apoptotic cell death via down regulating MDM2 and activated the tumor suppresser protein p53, subsequently down regulating the IAP family proteins (cIAP1, cIAP2, and XIAP) leading to caspase-dependent apoptosis in AGS and SNU-484 cells.


Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

  • Venu Venkatarame Gowda Saralamma‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.


Comparative proteomic analysis uncovers potential biomarkers involved in the anticancer effect of Scutellarein in human gastric cancer cells.

  • Venu Venkatarame Gowda Saralamma‎ et al.
  • Oncology reports‎
  • 2020‎

Scutellarein (SCU), a flavone that belongs to the flavonoid family and abundantly present in Scutellaria baicalensis a flowering plant in the family Lamiaceae, has been reported to exhibit anticancer effects in several cancer cell lines including gastric cancer (GC). Although our previous study documented the mechanisms of Scutellarein‑induced cytotoxic effects, the literature shows that the proteomic changes that are associated with the cellular response to SCU have been poorly understood. To avoid adverse side‑effects and significant toxicity of chemotherapy in patients who react poorly, biomarkers anticipating therapeutic responses are imperative. In the present study, we utilized a comparative proteomic analysis to identify proteins associated with Scutellarein (SCU)‑induced cell death in GC cells (AGS and SNU484), by integrating two‑dimensional gel electrophoresis (2‑DE), mass spectrometry (MS), and bioinformatics to analyze the proteins. Proteomic analysis between SCU‑treated and DMSO (control) samples successfully identified 41 (AGS) and 31 (SNU484) proteins by MALDI‑TOF/MS analysis and protein database search. Comparative proteomics analysis between AGS and SNU484 cells treated with SCU revealed a total of 7 protein identities commonly expressed and western blot analysis validated a subset of identified critical proteins, which were consistent with those of the 2‑DE outcome. Molecular docking studies also confirmed the binding affinity of SCU towards these critical proteins. Phosphatidylinositol 4,5‑bisphosphate 3‑kinase catalytic subunit β isoform (PIK3CB) protein expression was accompanied by a distinct group of cellular functions, including cell growth, and proliferation. Cancerous inhibitor of protein phosphatase 2A (CIP2A), is one of the oncogenic molecules that have been shown to promote tumor growth and resistance to apoptosis and senescence‑inducing therapies. In the present study, both PIK3CB and CIP2A proteins were downregulated in SCU‑treated cells, which boosts our previous results of SCU to induce apoptosis and inhibits GC cell growth by regulating these critical proteins. The comparative proteomic analysis has yielded candidate biomarkers of response to SCU treatment in GC cell models and further validation of these biomarkers will help the future clinical development of SCU as a novel therapeutic drug.


Proteomic analysis of differentially expressed proteins in vitamin C-treated AGS cells.

  • Arulkumar Nagappan‎ et al.
  • BMC biochemistry‎
  • 2013‎

Vitamin C (ascorbic acid) is an essential nutrient of most living tissues that readily acts as a strong reducing agent, which is abundant in fruits and vegetables. Although, it inhibits cell growth in many human cancer cells in vitro, treatment in cancer is still controversial. Hence, the purpose of this study was to investigate the molecular mechanism of the inhibitory effect of vitamin C on AGS cell growth, and protein profiles in AGS cells after exposure to vitamin C treatment, by using proteomic tools.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: