Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

LC-MS/MS-based proteome profiling in Daphnia pulex and Daphnia longicephala: the Daphnia pulex genome database as a key for high throughput proteomics in Daphnia.

  • Thomas Fröhlich‎ et al.
  • BMC genomics‎
  • 2009‎

Daphniids, commonly known as waterfleas, serve as important model systems for ecology, evolution and the environmental sciences. The sequencing and annotation of the Daphnia pulex genome both open future avenues of research on this model organism. As proteomics is not only essential to our understanding of cell function, and is also a powerful validation tool for predicted genes in genome annotation projects, a first proteomic dataset is presented in this article.


The influence of simulated microgravity on the proteome of Daphnia magna.

  • Benjamin Trotter‎ et al.
  • NPJ microgravity‎
  • 2015‎

The waterflea Daphnia is an interesting candidate for bioregenerative life support systems (BLSS). These animals are particularly promising because of their central role in the limnic food web and its mode of reproduction. However, the response of Daphnia to altered gravity conditions has to be investigated, especially on the molecular level, to evaluate the suitability of Daphnia for BLSS in space.


Daphnia magna transcriptome by RNA-Seq across 12 environmental stressors.

  • Luisa Orsini‎ et al.
  • Scientific data‎
  • 2016‎

The full exploration of gene-environment interactions requires model organisms with well-characterized ecological interactions in their natural environment, manipulability in the laboratory and genomic tools. The waterflea Daphnia magna is an established ecological and toxicological model species, central to the food webs of freshwater lentic habitats and sentinel for water quality. Its tractability and cyclic parthenogenetic life-cycle are ideal to investigate links between genes and the environment. Capitalizing on this unique model system, the STRESSFLEA consortium generated a comprehensive RNA-Seq data set by exposing two inbred genotypes of D. magna and a recombinant cross of these genotypes to a range of environmental perturbations. Gene models were constructed from the transcriptome data and mapped onto the draft genome of D. magna using EvidentialGene. The transcriptome data generated here, together with the available draft genome sequence of D. magna and a high-density genetic map will be a key asset for future investigations in environmental genomics.


Do microplastic particles affect Daphnia magna at the morphological, life history and molecular level?

  • Hannes K Imhof‎ et al.
  • PloS one‎
  • 2017‎

Microplastic particles are ubiquitous not only in marine but also in freshwater ecosystems. However, the impacts of microplastics, consisting of a large variety of synthetic polymers, on freshwater organisms remains poorly understood. We examined the effects of two polymer mixtures on the morphology, life history and on the molecular level of the waterflea Daphnia magna (three different clones). Microplastic particles of ~40 μm were supplied at a low concentration (1% of the food particles) leading to an average of ~30 particles in the digestive tract which reflects a high microplastic contamination but still resembles a natural situation. Neither increased mortality nor changes on the morphological (body length, width and tail spine length) or reproductive parameters were observed for adult Daphnia. The analyses of juvenile Daphnia revealed a variety of small and rather subtle responses of morphological traits (body length, width and tail spine length). For adult Daphnia, alterations in expression of genes related to stress responses (i.e. HSP60, HSP70 & GST) as well as of other genes involved in body function and body composition (i.e. SERCA) were observed already 48h after exposure. We anticipate that the adverse effects of microplastic might be influenced by many additional factors like size, shape, type and even age of the particles and that the rather weak effects, as detected in a laboratory, may lead to reduced fitness in a natural multi-stressor environment.


Proteomic analysis of Daphnia magna hints at molecular pathways involved in defensive plastic responses.

  • Kathrin A Otte‎ et al.
  • BMC genomics‎
  • 2014‎

Phenotypic plasticity in defensive traits occurs in many species when facing heterogeneous predator regimes. The waterflea Daphnia is well-known for showing a variety of these so called inducible defences. However, molecular mechanisms underlying this plasticity are poorly understood so far. We performed proteomic analysis on Daphnia magna exposed to chemical cues of the predator Triops cancriformis. D. magna develops an array of morphological changes in the presence of Triops including changes of carapace morphology and cuticle hardening.


Allelochemical run-off from the invasive terrestrial plant Impatiens glandulifera decreases defensibility in Daphnia.

  • Jens Georg Peter Diller‎ et al.
  • Scientific reports‎
  • 2023‎

Invasive species are a major threat for native ecosystems and organisms living within. They are reducing the biodiversity in invaded ecosystems, by outcompeting native species with e. g. novel substances. Invasive terrestrial plants can release allelochemicals, thereby reducing biodiversity due to the suppression of growth of native plants in invaded habitats. Aside from negative effects on plants, allelochemicals can affect other organisms such as mycorrhiza fungi and invertebrates in terrestrial ecosystems. When invasive plants grow in riparian zones, it is very likely that terrestrial borne allelochemicals can leach into the aquatic ecosystem. There, the often highly reactive compounds may not only elicit toxic effects to aquatic organisms, but they may also interfere with biotic interactions. Here we show that the allelochemical 2-methoxy-1,4-naphthoquinone (2-MNQ), produced by the ubiquitously occurring invasive terrestrial plant Impatiens glandulifera, interferes with the ability of Daphnia to defend itself against predators with morphological defences. Daphnia magna and Daphnia longicephala responded with morphological defences induced by chemical cues released by their corresponding predators, Triops cancriformis or Notonecta sp. However, predator cues in combination with 2-MNQ led to a reduction in the morphological defensive traits, body- and tail-spine length, in D. magna. In D. longicephala all tested inducible defensive traits were not significantly affected by 2-MNQ but indicate similar patterns, highlighting the importance to study different species to assess the risks for aquatic ecosystems. Since it is essential for Daphnia to adapt defences to the current predation risk, a maladaptation in defensive traits when simultaneously exposed to allelochemicals released by I. glandulifera, may therefore have knock-on effects on population dynamics across multiple trophic levels, as Daphnia is a key species in lentic ecosystems.


MALDI mass spectrometry imaging workflow for the aquatic model organisms Danio rerio and Daphnia magna.

  • Elisabeth Schirmer‎ et al.
  • Scientific reports‎
  • 2022‎

Lipids play various essential roles in the physiology of animals. They are also highly dependent on cellular metabolism or status. It is therefore crucial to understand to which extent animals can stabilize their lipid composition in the presence of external stressors, such as chemicals that are released into the environment. We developed a MALDI MS imaging workflow for two important aquatic model organisms, the zebrafish (Danio rerio) and water flea (Daphnia magna). Owing to the heterogeneous structure of these organisms, developing a suitable sample preparation workflow is a highly non-trivial but crucial part of this work and needs to be established first. Relevant parameters and practical considerations in order to preserve tissue structure and composition in tissue sections are discussed for each application. All measurements were based on high mass accuracy enabling reliable identification of imaged compounds. In zebrafish we demonstrate that a detailed mapping between histology and simultaneously determined lipid composition is possible at various scales, from extended structures such as the brain or gills down to subcellular structures such as a single axon in the central nervous system. For D. magna we present for the first time a MALDI MSI workflow, that demonstrably maintains tissue integrity during cryosectioning of non-preserved samples, and allows the mapping of lipids in the entire body and the brood chamber inside the carapace. In conclusion, the lipid signatures that we were able to detect with our method provide an ideal basis to analyze changes caused by pollutants in two key aquatic model organisms.


Uncovering the chemistry behind inducible morphological defences in the crustacean Daphnia magna via micro-Raman spectroscopy.

  • Sven Ritschar‎ et al.
  • Scientific reports‎
  • 2020‎

The widespread distribution of Crustacea across every aquatic ecological niche on Earth is enabled due to their exoskeleton's versatile properties. Especially mineralization of the exoskeleton provides protection against diverse environmental threats. Thereby, the exoskeleton of some entomostracans is extremely phenotypically plastic, especially in response to predators. For instance, the freshwater zooplankton Daphnia forms conspicuous inducible morphological defenses, such as helmets, and can increase the stability of its exoskeleton, which renders them less vulnerable to predation. In this study, we reveal for the first time the chemical composition of the exoskeleton of Daphnia magna, using Raman spectroscopy, to be composed of α-chitin and proteins with embedded amorphous calcium carbonate (ACC). Furthermore, we reveal the exoskeleton's chemical changes associated with inducible defense mechanisms in the form of more substantial mineralization, which is probably correlated with enhanced carapace stability. We, therefore, highlight the importance of calcium-biominerals for inducible morphological defenses in Daphnia.


Daphnia longicephala neuropeptides: morphological description of crustacean cardioactive peptide (CCAP) and periviscerokinins in the Ctenodaphnia central nervous system.

  • Linda C Weiss‎ et al.
  • Neuropeptides‎
  • 2014‎

The publication of the Daphnia genome has driven research in this ecologically relevant model organism in many directions. However, information on this organism's physiology and the relevant controlling factors is limited. In this regard, especially neuropeptides are important biochemical regulators that control a variety of cellular processes, which in combination influence physiological conditions and allow the adaptation of the internal physiological state to external conditions. Thus, neuropeptides are prime in understanding an organism's physiology. We here aimed to detect and describe the distribution of evolutionary conserved neuropeptides including the crustacean cardioactive peptide (CCAP) and peptides of the family periviscerokinins (PVKs) in the central nervous system and the periphery of the Daphnia longicephala head region. We were able to identify a large pair of CCAP immunoreactive cells within central nervous system. In addition, in the periphery we found CCAP immunoreactive cells in the epidermis of the head with processes indicating cuticular secretion. Furthermore, we were able to identify and describe a complex neuronal circuit of PVK neuropeptides in the central nervous system. The data obtained in this study will provide important background information for future investigations aiming to unravel the cellular, neuronal and physiological pathways in a highly adaptive organism such as Daphnia.


Uncovering ultrastructural defences in Daphnia magna--an interdisciplinary approach to assess the predator-induced fortification of the carapace.

  • Max Rabus‎ et al.
  • PloS one‎
  • 2013‎

The development of structural defences, such as the fortification of shells or exoskeletons, is a widespread strategy to reduce predator attack efficiency. In unpredictable environments these defences may be more pronounced in the presence of a predator. The cladoceran Daphnia magna (Crustacea: Branchiopoda: Cladocera) has been shown to develop a bulky morphotype as an effective inducible morphological defence against the predatory tadpole shrimp Triops cancriformis (Crustacea: Branchiopoda: Notostraca). Mediated by kairomones, the daphnids express an increased body length, width and an elongated tail spine. Here we examined whether these large scale morphological defences are accompanied by additional ultrastructural defences, i.e. a fortification of the exoskeleton. We employed atomic force microscopy (AFM) based nanoindentation experiments to assess the cuticle hardness along with tapping mode AFM imaging to visualise the surface morphology for predator exposed and non-predator exposed daphnids. We used semi-thin sections of the carapace to measure the cuticle thickness, and finally, we used fluorescence microscopy to analyse the diameter of the pillars connecting the two carapace layers. We found that D. magna indeed expresses ultrastructural defences against Triops predation. The cuticle in predator exposed individuals is approximately five times harder and two times thicker than in control daphnids. Moreover, the pillar diameter is significantly increased in predator exposed daphnids. These predator-cue induced changes in the carapace architecture should provide effective protection against being crushed by the predator's mouthparts and may add to the protective effect of bulkiness. This study highlights the potential of interdisciplinary studies to uncover new and relevant aspects even in extensively studied fields of research.


Chaoborus and gasterosteus anti-predator responses in Daphnia pulex are mediated by independent cholinergic and gabaergic neuronal signals.

  • Linda C Weiss‎ et al.
  • PloS one‎
  • 2012‎

Many prey species evolved inducible defense strategies that protect effectively against predation threats. Especially the crustacean Daphnia emerged as a model system for studying the ecology and evolution of inducible defenses. Daphnia pulex e.g. shows different phenotypic adaptations against vertebrate and invertebrate predators. In response to the invertebrate phantom midge larvae Chaoborus (Diptera) D. pulex develops defensive morphological defenses (neckteeth). Cues originating from predatory fish result in life history changes in which resources are allocated from somatic growth to reproduction. While there are hints that responses against Chaoborus cues are transmitted involving cholinergic neuronal pathways, nothing is known about the neurophysiology underlying the transmission of fish related cues. We investigated the neurophysiological basis underlying the activation of inducible defenses in D. pulex using induction assays with the invertebrate predator Chaoborus and the three-spined stickleback Gasterosteus aculeatus. Predator-specific cues were combined with neuro-effective substances that stimulated or inhibited the cholinergic and gabaergic nervous system. We show that cholinergic-dependent pathways are involved in the perception and transmission of Chaoborus cues, while GABA was not involved. Thus, the cholinergic nervous system independently mediates the development of morphological defenses in response to Chaoborus cues. In contrast, only the inhibitory effect of GABA significantly influence fish-induced life history changes, while the application of cholinergic stimulants had no effect in combination with fish related cues. Our results show that cholinergic stimulation mediates signal transmission of Chaoborus cues leading to morphological defenses. Fish cues, which are responsible for predator-specific life history adaptations involve gabaergic control. Our study shows that both pathways are independent and thus potentially allow for adjustment of responses to variable predation regimes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: