Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

d-Cysteine promotes dendritic development in primary cultured cerebellar Purkinje cells via hydrogen sulfide production.

  • Takahiro Seki‎ et al.
  • Molecular and cellular neurosciences‎
  • 2018‎

Hydrogen sulfide and reactive sulfur species are regulators of physiological functions, have antioxidant effects against oxidative stresses, and are endogenously generated from l-cysteine. Recently, a novel pathway that generates hydrogen sulfide and reactive sulfur species from d-cysteine has been identified. d-Amino acid oxidase (DAO) is involved in this pathway and, among the various brain regions, is especially abundant in the cerebellum. d-Cysteine has been found to be a better substrate in the generation of hydrogen sulfide in the cerebellum than l-cysteine. Therefore, d-cysteine might be a novel neuroprotectant against cerebellar diseases such as spinocerebellar ataxia (SCA). However, it remains unknown if d-cysteine affects cerebellar Purkinje cells (PCs), which are important for cerebellar functions and are frequently degenerated in SCA patients. In the present study, we investigated whether the production of hydrogen sulfide from d-cysteine affects the dendritic development of cultured PCs. d-Cysteine was found to enhance the dendritic development of PCs significantly, while l-cysteine impaired it. The effect of d-cysteine was inhibited by simultaneous treatment with DAO inhibitors and was reproduced by treatment with 3-mercaptopyruvate, a metabolite of d-cysteine produced by the action of DAO, and disodium sulfide, a donor of hydrogen sulfide. In addition, hydrogen sulfide was immediately produced in cerebellar primary cultures after treatment with d-cysteine and 3-mercaptopyruvate. These findings suggest that d-cysteine enhances the dendritic development of primary cultured PCs via the generation of hydrogen sulfide.


D-Cysteine Activates Chaperone-Mediated Autophagy in Cerebellar Purkinje Cells via the Generation of Hydrogen Sulfide and Nrf2 Activation.

  • Erika Ueda‎ et al.
  • Cells‎
  • 2022‎

Chaperone-mediated autophagy (CMA) is a pathway in the autophagy-lysosome protein degradation system. CMA impairment has been implicated to play a role in spinocerebellar ataxia (SCA) pathogenesis. D-cysteine is metabolized by D-amino acid oxidase (DAO), leading to hydrogen sulfide generation in the cerebellum. Although D-cysteine alleviates the disease phenotypes in SCA-model mice, it remains unknown how hydrogen sulfide derived from D-cysteine exerts this effect. In the present study, we investigated the effects of D-cysteine and hydrogen sulfide on CMA activity using a CMA activity marker that we have established. D-cysteine activated CMA in Purkinje cells (PCs) of primary cerebellar cultures where DAO was expressed, while it failed to activate CMA in DAO-deficient AD293 cells. In contrast, Na2S, a hydrogen sulfide donor, activated CMA in both PCs and AD293 cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) is known to be activated by hydrogen sulfide and regulate CMA activity. An Nrf2 inhibitor, ML385, prevented CMA activation triggered by D-cysteine and Na2S. Additionally, long-term treatment with D-cysteine increased the amounts of Nrf2 and LAMP2A, a CMA-related protein, in the mouse cerebellum. These findings suggest that hydrogen sulfide derived from D-cysteine enhances CMA activity via Nrf2 activation.


Contribution of endogenous glycine site NMDA agonists to excitotoxic retinal damage in vivo.

  • Yasuhiro Hama‎ et al.
  • Neuroscience research‎
  • 2006‎

N-Methyl-d-aspartate (NMDA) receptors, which play an important role in neuronal excitotoxicity, require not only agonists at the glutamate-binding site but also co-agonists at the glycine site for their activation. Here we examined the role of endogenous agonists at the glycine site of NMDA receptors in excitotoxic retinal damage in vivo. To quantify the number of surviving retinal ganglion cells (RGCs), we injected a retrograde tracer, fluoro-gold, into the superior colliculus bilaterally and subsequently counted RGCs on whole-mounted retinas. Co-injection of 5,7-dichlorokynurenic acid (300 nmol), a competitive antagonist at the glycine site of NMDA receptors, rescued RGCs from damage induced by 200 nmol NMDA. On the other hand, RGC death induced by 20 nmol NMDA was enhanced by addition of glycine (10 nmol), D-serine (10 nmol) or a competitive glycine transporter-1 inhibitor, sarcosine (0.3 or 3 nmol). Moreover, application of d-serine-degrading enzyme, D-amino acid oxidase (30 mU), partially suppressed RGC death induced by 20 nmol NMDA. These results suggest that the severity of excitotoxic retinal damage in vivo depends on the levels of both glycine and D-serine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: