Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

miR-107 inhibition upregulates CAB39 and activates AMPK-Nrf2 signaling to protect osteoblasts from dexamethasone-induced oxidative injury and cytotoxicity.

  • Yu Zhuang‎ et al.
  • Aging‎
  • 2020‎

To human osteoblasts dexamethasone (DEX) treatment induces significant oxidative injury and cytotoxicity. Inhibition of CAB39 (calcium binding protein 39)-targeting microRNA can induce CAB39 upregulation, activating AMP-activated protein kinase (AMPK) signaling and offering osteoblast cytoprotection. Here we identified a novel CAB39-targeting miRNA: the microRNA-107 (miR-107). RNA-Pull down assay results demonstrated that the biotinylated-miR-107 directly binds to CAB39 mRNA in OB-6 human osteoblastic cells. Forced overexpression of miR-107, by infection of pre-miR-107 lentivirus or transfection of wild-type miR-107 mimic, largely inhibited CAB39 expression in OB-6 cells and primary human osteoblasts. Contrarily, miR-107 inhibition, by antagomiR-107, increased its expression, resulting in AMPK cascade activation. AntagomiR-107 largely attenuated DEX-induced cell death and apoptosis in OB-6 cells and human osteoblasts. Importantly, osteoblast cytoprotection by antagomiR-107 was abolished with AMPK in-activation by AMPKα1 dominant negative mutation, silencing or knockout. Further studies demonstrated that antagomiR-107 activated AMPK downstream Nrf2 cascade to inhibit DEX-induced oxidative injury. Conversely, Nrf2 knockout almost abolished antagomiR-107-induced osteoblast cytoprotection against DEX. Collectively, miR-107 inhibition induced CAB39 upregulation and activated AMPK-Nrf2 signaling to protect osteoblasts from DEX-induced oxidative injury and cytotoxicity.


MHY1485 activates mTOR and protects osteoblasts from dexamethasone.

  • Sai Zhao‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Dexamethasone (Dex) exerts cytotoxic effects to cultured osteoblasts. The potential effect of MHY1485, a small-molecular mammalian target of rapamycin (mTOR) activator, against the process was studied here. In both osteoblastic MC3T3-E1 cells and primary murine osteoblasts, treatment with MHY1485 significantly ameliorated Dex-induced cell death and apoptosis. mTOR inhibition, through mTOR kinase inhibitor OSI-027 or mTOR shRNAs, abolished MHY1485-mediated osteoblast cytoprotection against Dex. Intriguingly, activation of mTOR complex (mTORC1), but not mTORC2, is required for MHY1485's anti-Dex activity. mTORC1 inhibitors (rapamycin and RAD001) or Raptor knockdown almost reversed MHY1485-induced osteoblast cytoprotection. mTORC2 inhibition, via shRNA knockdown of Rictor, failed to affect MHY1485's activity in MC3T3-E1 cells. Further studies showed that MHY1485 treatment in MC3T3-E1 cells and primary murine osteoblasts significantly inhibited Dex-induced mitochondrial death pathway activation, the latter was tested by mitochondrial depolarization, cyclophilin D-ANT-1 association and cytochrome C cytosol release. Together, these results suggest that MHY1485 activates mTORC1 signaling to protect osteoblasts from Dex.


microRNA-19a protects osteoblasts from dexamethasone via targeting TSC1.

  • Gang Liu‎ et al.
  • Oncotarget‎
  • 2018‎

Activation of mTOR complex 1 (mTORC1) could protect human osteoblasts from dexamethasone. Tuberous sclerosis complex 1 (TSC1) is mTORC1 upstream inhibitory protein. We demonstrate here that microRNA-19a ("miR-19a", -3p) targets the 3' untranslated regions of TSC1 mRNA. Expression of miR-19a downregulated TSC1 in OB-6 osteoblastic cells and primary human osteoblasts. miR-19a activated mTORC1 and protected human osteoblasts from dexamethasone. mTORC1 inhibition, by RAD001 or Raptor shRNA, almost completely abolished miR-19a-induced osteoblast cytoprotection against dexamethasone. Knockdown of TSC1 by targeted shRNA similarly induced mTORC1 activation and protected osteoblasts. Moreover, miR-19a activated mTORC1-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited dexamethasone-induced reactive oxygen species production in osteoblasts. Together, miR-19a protects human osteoblasts from dexamethasone possibly via targeting TSC1-mTORC1 signaling.


FGF23 protects osteoblasts from dexamethasone-induced oxidative injury.

  • Feng Ji‎ et al.
  • Aging‎
  • 2020‎

Dexamethasone (DEX) can exert a cytotoxic effect on cultured osteoblasts. The current study explored the potential osteoblast cytoprotective effect of fibroblast growth factor 23 (FGF23). In OB-6 human osteoblastic cells and primary murine osteoblasts, FGF23 induced phosphorylation of the receptor FGFR1 and activated the downstream Akt-S6K1 signaling. FGF23-induced FGFR1-Akt-S6K phosphorylation was largely inhibited by FGFR1 shRNA, but augmented with ectopic FGFR1 expression in OB-6 cells. FGF23 attenuated DEX-induced death and apoptosis in OB-6 cells and murine osteoblasts. Its cytoprotective effects were abolished by FGFR1 shRNA, Akt inhibition or Akt1 knockout. Conversely, forced activation of Akt inhibited DEX-induced cytotoxicity in OB-6 cells. Furthermore, FGF23 activated Akt downstream nuclear-factor-E2-related factor 2 (Nrf2) signaling to alleviate DEX-induced oxidative injury. On the contrary, Nrf2 shRNA or knockout almost reversed FGF23-induced osteoblast cytoprotection against DEX. Collectively, FGF23 activates FGFR1-Akt and Nrf2 signaling cascades to protect osteoblasts from DEX-induced oxidative injury and cell death.


PP2A catalytic subunit silence by microRNA-429 activates AMPK and protects osteoblastic cells from dexamethasone.

  • Shiguang Guo‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Activation of AMP-activated protein kinase (AMPK) could efficiently protect osteoblasts from dexamethasone (Dex). Here, we aim to induce AMPK activation through miRNA-mediated downregulating its phosphatase, protein phosphatase 2A (PP2A). We discovered that microRNA-429 ("miR-429") targets the catalytic subunit of PP2A (PP2A-c). Significantly, expression of miR-429 downregulated PP2A-c and activated AMPK (p-AMPKα1 Thr172) in human osteoblastic cells (OB-6 and hFOB1.19 lines). Remarkably, miR-429 expression alleviated Dex-induced osteoblastic cell death and apoptosis. On the other hand, miR-429-induced AMPK activation and osteoblast cytoprotection were almost abolished when AMPKα1 was either silenced (by targeted shRNA) or mutated (T172A inactivation). Further studies showed that miR-429 expression in osteoblastic cells increased NADPH (nicotinamide adenine dinucleotide phosphate) content to significantly inhibit Dex-induced oxidative stress. Such effect by miR-429 was again abolished with AMPKα1 silence or mutation. Together, we propose that PP2A-c silence by miR-429 activates AMPK and protects osteoblastic cells from Dex.


Activation of Nrf2 by MIND4-17 protects osteoblasts from hydrogen peroxide-induced oxidative stress.

  • Shiguang Guo‎ et al.
  • Oncotarget‎
  • 2017‎

MIND4-17 is a recently developed NF-E2-related factor 2 (Nrf2) activator, which uniquely causes Nrf2 disassociation from Keap1. Here, we showed that pretreatment with MIND4-17 significantly inhibited hydrogen peroxide (H2O2)-induced viability reduction of primary osteoblasts and OB-6 osteoblastic cells. Meanwhile, MIND4-17 inhibited both apoptotic and non-apoptotic osteoblast cell death by H2O2. MIND4-17 treatment induced Keap1-Nrf2 disassociation, causing Nrf2 stabilization, accumulation and nuclear translocation in osteoblasts, leading to transcription of several Nrf2-dependent genes, including heme oxygenase 1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), γ-glutamylcysteine synthetase modifier subunit (GCLM) and catalytic subunit (GCLC). Additionally, MIND4-17 largely attenuated H2O2-reactive oxygen species (ROS) production, lipid peroxidation and DNA damages. Nrf2 knockdown by targeted short hairpin RNA (shRNA) exacerbated H2O2-induced cytotoxicity in OB-6 osteoblastic cells, and nullified MIND4-17-mediated cytoprotection against H2O2. Meanwhile, Keap1 shRNA took over MIND4-17's actions and protected OB-6 cells from H2O2. Together, MIND4-17 activates Nrf2 signaling and protects osteoblasts from H2O2.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: