Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 818 papers

Copy number variation in human genomes from three major ethno-linguistic groups in Africa.

  • Oscar A Nyangiri‎ et al.
  • BMC genomics‎
  • 2020‎

Copy number variation is an important class of genomic variation that has been reported in 75% of the human genome. However, it is underreported in African populations. Copy number variants (CNVs) could have important impacts on disease susceptibility and environmental adaptation. To describe CNVs and their possible impacts in Africans, we sequenced genomes of 232 individuals from three major African ethno-linguistic groups: (1) Niger Congo A from Guinea and Côte d'Ivoire, (2) Niger Congo B from Uganda and the Democratic Republic of Congo and (3) Nilo-Saharans from Uganda. We used GenomeSTRiP and cn.MOPS to identify copy number variant regions (CNVRs).


Pediatric primary central nervous system germ cell tumors of different prognosis groups show characteristic miRNome traits and chromosome copy number variations.

  • Hsei-Wei Wang‎ et al.
  • BMC genomics‎
  • 2010‎

Intracranial pediatric germ cell tumors (GCTs) are rare and heterogeneous neoplasms and vary in histological differentiation, prognosis and clinical behavior. Germinoma and mature teratoma are GCTs that have a good prognosis, while other types of GCTs, termed nongerminomatous malignant germ cell tumors (NGMGCTs), are tumors with an intermediate or poor prognosis. The second group of tumors requires more extensive drug and irradiation treatment regimens. The mechanisms underlying the differences in incidence and prognosis of the various GCT subgroups are unclear.


Quality control of microbiota metagenomics by k-mer analysis.

  • Florian Plaza Onate‎ et al.
  • BMC genomics‎
  • 2015‎

The biological and clinical consequences of the tight interactions between host and microbiota are rapidly being unraveled by next generation sequencing technologies and sophisticated bioinformatics, also referred to as microbiota metagenomics. The recent success of metagenomics has created a demand to rapidly apply the technology to large case-control cohort studies and to studies of microbiota from various habitats, including habitats relatively poor in microbes. It is therefore of foremost importance to enable a robust and rapid quality assessment of metagenomic data from samples that challenge present technological limits (sample numbers and size). Here we demonstrate that the distribution of overlapping k-mers of metagenome sequence data predicts sequence quality as defined by gene distribution and efficiency of sequence mapping to a reference gene catalogue.


Distinct regulatory networks control toxin gene expression in elapid and viperid snakes.

  • Cassandra M Modahl‎ et al.
  • BMC genomics‎
  • 2024‎

Venom systems are ideal models to study genetic regulatory mechanisms that underpin evolutionary novelty. Snake venom glands are thought to share a common origin, but there are major distinctions between venom toxins from the medically significant snake families Elapidae and Viperidae, and toxin gene regulatory investigations in elapid snakes have been limited. Here, we used high-throughput RNA-sequencing to profile gene expression and microRNAs between active (milked) and resting (unmilked) venom glands in an elapid (Eastern Brown Snake, Pseudonaja textilis), in addition to comparative genomics, to identify cis- and trans-acting regulation of venom production in an elapid in comparison to viperids (Crotalus viridis and C. tigris).


Comparative ribosome profiling uncovers a dominant role for translational control in Toxoplasma gondii.

  • Musa A Hassan‎ et al.
  • BMC genomics‎
  • 2017‎

The lytic cycle of the protozoan parasite Toxoplasma gondii, which involves a brief sojourn in the extracellular space, is characterized by defined transcriptional profiles. For an obligate intracellular parasite that is shielded from the cytosolic host immune factors by a parasitophorous vacuole, the brief entry into the extracellular space is likely to exert enormous stress. Due to its role in cellular stress response, we hypothesize that translational control plays an important role in regulating gene expression in Toxoplasma during the lytic cycle. Unlike transcriptional profiles, insights into genome-wide translational profiles of Toxoplasma gondii are lacking.


Genomic insight into the scale specialization of the biological control agent Novius pumilus (Weise, 1892).

  • Xue-Fei Tang‎ et al.
  • BMC genomics‎
  • 2022‎

Members of the genus Novius Mulsant, 1846 (= Rodolia Mulsant, 1850) (Coleoptera, Coccinellidae), play important roles in the biological control of cotton cushion scale pests, especially those belonging to Icerya. Since the best-known species, the vedalia beetle Novius cardinalis (Mulsant, 1850) was introduced into California from Australia, more than a century of successful use in classical biological control, some species of Novius have begun to exhibit some field adaptations to novel but related prey species. Despite their economic importance, relatively little is known about the underlying genetic adaptations associated with their feeding habits. Knowledge of the genome sequence of Novius is a major step towards further understanding its biology and potential applications in pest control.


Integrated metabolic modelling reveals cell-type specific epigenetic control points of the macrophage metabolic network.

  • Maria Pires Pacheco‎ et al.
  • BMC genomics‎
  • 2015‎

The reconstruction of context-specific metabolic models from easily and reliably measurable features such as transcriptomics data will be increasingly important in research and medicine. Current reconstruction methods suffer from high computational effort and arbitrary threshold setting. Moreover, understanding the underlying epigenetic regulation might allow the identification of putative intervention points within metabolic networks. Genes under high regulatory load from multiple enhancers or super-enhancers are known key genes for disease and cell identity. However, their role in regulation of metabolism and their placement within the metabolic networks has not been studied.


Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control.

  • Cheng-Cai Zhang‎ et al.
  • BMC genomics‎
  • 2016‎

Self-incompatibility (SI) is under genetic control and prevents inbreeding depression in angiosperms. SI mechanisms are quite complicated and still poorly understood in many plants. Tea (Camellia sinensis L.) belonging to the family of Theaceae, exhibits high levels of SI and high heterozygosity. Uncovering the molecular basis of SI of the tea plant may enhance breeding and simplify genomics research for the whole family.


Comparative transcriptomics reveals PrrAB-mediated control of metabolic, respiration, energy-generating, and dormancy pathways in Mycobacterium smegmatis.

  • Jason D Maarsingh‎ et al.
  • BMC genomics‎
  • 2019‎

Mycobacterium smegmatis is a saprophytic bacterium frequently used as a genetic surrogate to study pathogenic Mycobacterium tuberculosis. The PrrAB two-component genetic regulatory system is essential in M. tuberculosis and represents an attractive therapeutic target. In this study, transcriptomic analysis (RNA-seq) of an M. smegmatis ΔprrAB mutant was used to define the PrrAB regulon and provide insights into the essential nature of PrrAB in M. tuberculosis.


Transcriptome analysis of the almond moth, Cadra cautella, female abdominal tissues and identification of reproduction control genes.

  • Mureed Husain‎ et al.
  • BMC genomics‎
  • 2019‎

The almond moth, Cadra cautella is a destructive pest of stored food commodities including dates that causes severe economic losses for the farming community worldwide. To date, no genetic information related to the molecular mechanism/strategies of its reproduction is available. Thus, transcriptome analysis of C. cautella female abdominal tissues was performed via next-generation sequencing (NGS) to recognize the genes responsible for reproduction.


Transcriptome analysis of the Cryptocaryon irritans tomont stage identifies potential genes for the detection and control of cryptocaryonosis.

  • Yogeswaran Lokanathan‎ et al.
  • BMC genomics‎
  • 2010‎

Cryptocaryon irritans is a parasitic ciliate that causes cryptocaryonosis (white spot disease) in marine fish. Diagnosis of cryptocaryonosis often depends on the appearance of white spots on the surface of the fish, which are usually visible only during later stages of the disease. Identifying suitable biomarkers of this parasite would aid the development of diagnostic tools and control strategies for C. irritans. The C. irritans genome is virtually unexplored; therefore, we generated and analyzed expressed sequence tags (ESTs) of the parasite to identify genes that encode for surface proteins, excretory/secretory proteins and repeat-containing proteins.


Gene expression profiling in the stress control brain region hypothalamic paraventricular nucleus reveals a novel gene network including amyloid beta precursor protein.

  • Amalia Tsolakidou‎ et al.
  • BMC genomics‎
  • 2010‎

The pivotal role of stress in the precipitation of psychiatric diseases such as depression is generally accepted. This study aims at the identification of genes that are directly or indirectly responding to stress. Inbred mouse strains that had been evidenced to differ in their stress response as well as in their response to antidepressant treatment were chosen for RNA profiling after stress exposure. Gene expression and regulation was determined by microarray analyses and further evaluated by bioinformatics tools including pathway and cluster analyses.


The effects of transfection reagent polyethyleneimine (PEI) and non-targeting control siRNAs on global gene expression in human aortic smooth muscle cells.

  • Nurazhani A Raof‎ et al.
  • BMC genomics‎
  • 2016‎

RNA interference (RNAi) is a powerful platform utilized to target transcription of specific genes and downregulate the protein product. To achieve effective silencing, RNAi is usually applied to cells or tissue with a transfection reagent to enhance entry into cells. A commonly used control is the same transfection reagent plus a "noncoding RNAi". However, this does not control for the genomic response to the transfection reagent alone or in combination with the noncoding RNAi. These control effects while not directly targeting the gene in question may influence expression of other genes that in turn alter expression of the target. The current study was prompted by our work focused on prevention of vascular bypass graft failure and our experience with gene silencing in human aortic smooth muscle cells (HAoSMCs) where we suspected that off target effects through this mechanism might be substantial. We have used Next Generation Sequencing (NGS) technology and bioinformatics analysis to examine the genomic response of HAoSMCs to the transfection reagent alone (polyethyleneimine (PEI)) or in combination with commercially obtained control small interfering RNA (siRNAs) (Dharmacon and Invitrogen).


Identification of differentially expressed genes in flower, leaf and bulb scale of Lilium oriental hybrid 'Sorbonne' and putative control network for scent genes.

  • Fang Du‎ et al.
  • BMC genomics‎
  • 2017‎

Lily is an economically important plant, with leaves and bulbs consisting of overlapping scales, large ornamental flowers and a very large genome. Although it is recognized that flowers and bulb scales are modified leaves, very little is known about the genetic control and biochemical differentiation underlying lily organogenesis and development. Here we examined the differentially expressed genes in flower, leaf and scale of lily, using RNA-sequencing, and identified organ-specific genes, including transcription factors, genes involved in photosynthesis in leaves, carbohydrate metabolism in bulb scales and scent and color production in flowers.


Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification.

  • Marina de Miguel‎ et al.
  • BMC genomics‎
  • 2014‎

Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought.


Comparative transcriptome analysis of the newly discovered insect vector of the pine wood nematode in China, revealing putative genes related to host plant adaptation.

  • Zehai Hou‎ et al.
  • BMC genomics‎
  • 2021‎

In many insect species, the larvae/nymphs are unable to disperse far from the oviposition site selected by adults. The Sakhalin pine sawyer Monochamus saltuarius (Gebler) is the newly discovered insect vector of the pine wood nematode (Bursaphelenchus xylophilus) in China. Adult M. saltuarius prefers to oviposit on the host plant Pinus koraiensis, rather than P. tabuliformis. However, the genetic basis of adaptation of the larvae of M. saltuarius with weaken dispersal ability to host environments selected by the adult is not well understood.


Assessment of beneficial effects and identification of host adaptation-associated genes of Ligilactobacillus salivarius isolated from badgers.

  • Yu Wang‎ et al.
  • BMC genomics‎
  • 2023‎

Ligilactobacillus salivarius has been frequently isolated from the gut microbiota of humans and domesticated animals and has been studied as a candidate probiotic. Badger (Meles meles) is known as a "generalist" species that consumes complex foods and exhibits tolerance and resistance to certain pathogens, which can be partly attributed to the beneficial microbes such as L. salivarius in the gut microbiota. However, our understanding of the beneficial traits and genomic features of badger-originated L. salivarius remains elusive.


Transcriptomics reveal the molecular underpinnings of chemosensory proteins in Chlorops oryzae.

  • Lin Qiu‎ et al.
  • BMC genomics‎
  • 2018‎

Chemosensory proteins are a family of insect-specific chemical sensors that sense specific chemical cues and regulate insect behavior. Chemosensory proteins have been identified and analyzed in many insect species, such as Drosophila melanogaster, Bactrocera dorsalis and Calliphora stygia. This research has revealed that these proteins play a crucial role in insect orientation, predation and oviposition. However, little is known about the chemosensory proteins of Chlorops oryzae, a major pest of rice crops throughout Asia.


Chicken cecal DNA methylome alteration in the response to Salmonella enterica serovar Enteritidis inoculation.

  • Yuanmei Wang‎ et al.
  • BMC genomics‎
  • 2020‎

Salmonella enterica serovar Enteritidis (SE) is one of the pathogenic bacteria, which affects poultry production and poses a severe threat to public health. Chicken meat and eggs are the main sources of human salmonellosis. DNA methylation is involved in regulatory processes including gene expression, chromatin structure and genomic imprinting. To understand the methylation regulation in the response to SE inoculation in chicken, the genome-wide DNA methylation profile following SE inoculation was analyzed through whole-genome bisulfite sequencing in the current study.


Evaluation of the evolutionary genetics and population structure of Culex pipiens pallens in Shandong province, China based on knockdown resistance (kdr) mutations and the mtDNA-COI gene.

  • Chuanhui Zang‎ et al.
  • BMC genomics‎
  • 2023‎

Mosquitoes are important vectors for a range of diseases, contributing to high rates of morbidity and mortality in the human population. Culex pipiens pallens is dominant species of Culex mosquito in northern China and a major vector for both West Nile virus and Bancroftian filariasis. Insecticide application were largely applied to control the mosquito-mediated spread of these diseases, contributing to increasing rates of resistance in the mosquito population. The voltage-gated sodium channel (Vgsc) gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr). While these kdr mutations are known to be critical to pyrethroid resistance, their evolutionary origins remain poorly understood. Clarifying the origins of these mutations is potential to guide further vector control and disease prevention efforts. Accordingly, the present study was designed to study the evolutionary genetics of kdr mutations and their association with the population structure of Cx. p. pallens in Shandong province, China.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: