Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 162 papers

FGFR2 gene polymorphism rs2981582 is associated with non-functioning pituitary adenomas in Chinese Han population: a case-control study.

  • Bin Zhu‎ et al.
  • Bioscience reports‎
  • 2018‎

The association of the fibroblast growth factor receptor 2 gene (FGFR2) polymorphism rs2981582 with breast cancer has been extensively studied, whereas the role of this polymorphism in non-functioning pituitary adenoma (NFPA) has not been elucidated. We thus investigated a potential association of rs2981582 with NFPA. A total of 79 patients and 142 healthy control participants were enrolled in our study. DNA of the participants was extracted from peripheral blood samples and genotyped by using the MassARRAY method. We found that the AA genotype was associated with a higher risk of developing NFPA (OR = 1.743, 95%CI: 1.151-2.64, P=0.008). After adjusting for risk factors, significant difference was still observed between the two groups (OR = 1.862, 95%CI: 1.172-2.957, P=0.008). Moreover, under the assumptions of the recessive model (OR = 3.051, 95%CI: 1.403-6.635, P=0.005) and the additive model (AG: OR = 0.329, 95%CI: 0.144-0.755, P=0.009; AA: OR = 0.326, 95%CI: 0.141-0.757, P=0.009), rs2981582 was associated with an increased risk of NFPA. Our results proved that FGFR2 rs2981582 AA genotype was associated with a higher risk of NFPA. The recessive model and additive model also showed increased the risk of NFPA.


Changes in Resting-State Functional Connectivity of Cerebellum in Amnestic Mild Cognitive Impairment and Alzheimer's Disease: A Case-Control Study.

  • Zhi Zhou‎ et al.
  • Frontiers in systems neuroscience‎
  • 2021‎

This case-control study is aimed to investigate the correlation of altered functional connectivity (FC) in cerebellum with cognitive impairment in amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD). The morphometric and resting-state FC MRI analysis including 46 participants with AD, 32 with aMCI and 42 age-matched normal controls (NCs) were conducted. We compared the cerebellar gray matter volume and cerebellar FC with cerebral cortical regions among three groups. To investigate the relationship of cerebellar FC with cognition, we measure the correlation of significant altered FC and individual cognitive domain. No significant morphometric differences of cerebellum was observed across three groups. The patients with AD had weaker cerebral cortical FCs in bilateral Crus I and left VIIb compared to NCs, and in bilateral Crus I compared to patients with aMCI. For patients with aMCI, the weaker FC were found between right Crus I, left VIIb and cerebral cortical regions compared to NCs. The strength of left cerebellar FC positively correlated with specific cognitive subdomains, including memory, executive function, visuospatial function, and global cognition in AD and aMCI. These findings demonstrated the alteration of cerebellar FC with cerebral cortical regions, and the correlation of cerebellar FC and cognitive impairment in AD and aMCI.


High-Sucrose Diet Exposure on Larvae Contributes to Adult Fecundity and Insecticide Tolerance in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel).

  • Lei Wang‎ et al.
  • Insects‎
  • 2023‎

Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is one of the broad host ranges and economically-important insect pests in tropical and subtropical areas. A wide range of hosts means they have strong adaptation ability to changes in dietary macronutrients (e.g., sucrose and protein). However, the effects of dietary conditions on the phenotypes and genotypes of B. dorsalis are still unclear. In this study, we aimed to investigate the effects of larval dietary sucrose on the life history traits and stress tolerance of B. dorsalis, and its defense response at the molecular level. The results showed that low-sucrose (LS) induced decreased body size, shortened developmental duration, and enhanced sensitivity to beta-cypermethrin. Otherwise, high-sucrose (HS) diet increased developmental duration, adult fecundity, and tolerance to malathion. Based on transcriptome data, 258 and 904 differentially expressed genes (DEGs) were identified in the NS (control) versus LS groups, and NS versus HS groups, respectively. These yielded DEGs were relevant to multiple specific metabolisms, hormone synthesis and signaling, and immune-related pathways. Our study will provide biological and molecular perspective to understand phenotypic adjustments to diets and the strong host adaptability in oriental fruit flies.


A bionic cellulose nanofiber-based nanocage wound dressing for NIR-triggered multiple synergistic therapy of tumors and infected wounds.

  • Rimei Chen‎ et al.
  • Biomaterials‎
  • 2022‎

Tumor recurrence and drug-resistant bacterial infection are the main reasons that wounds heal with difficulty after skin tumor treatment. The near infrared- (NIR-) and pH-responsive, bionic, cellulose nanofiber-based (CNF-based) nanocage wound dressing with biocompatibility, bioviscosity, and shape adaptability is designed for dual NIR-triggered photothermal therapy of tumor and infection-induced wound healing. The wound dressing with the intertwining three dimensional (3D) nanocage network structure is skillfully constructed using NIR-responsive cellulose nanofibers and pH-responsive cellulose nanofibers as the skeleton, which endows the dressing with a high drug-loading capacity of doxorubicin (400 mg·g-1), and indocyanine green (25 mg·g-1). Moreover, the NIR- and pH-responsive bionic "On/Off" switches of the dressing enable a controllable and efficient drug release onto the wound area. The dual NIR-triggered wound dressing with excellent photothermal conversion performance possesses good antibacterial properties against Escherichia coli, Staphylococcus aureus, and drug-resistant Staphylococcus aureus. It could effectively eliminate bacterial biofilms and kill A375 tumor cells. Interestingly, the bionic wound dressing with shape adaptability could adapt and treat irregular postoperative skin tumor wounds and drug-resistant bacterial infection via the synergistic therapy of photothermal, photodynamic, and chemotherapy, which provides an ideal strategy for clinical intervention.


Proteomic Analyses of Acinetobacter baumannii Clinical Isolates to Identify Drug Resistant Mechanism.

  • Ping Wang‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2021‎

Acinetobacter baumannii is one of the main causes of nosocomial infections. Increasing numbers of multidrug-resistant Acinetobacter baumannii cases have been reported in recent years, but its antibiotic resistance mechanism remains unclear. We studied 9 multidrug-resistant (MDR) and 10 drug-susceptible Acinetobacter baumannii clinical isolates using Label free, TMT labeling approach and glycoproteomics analysis to identify proteins related to drug resistance. Our results showed that 164 proteins exhibited different expressions between MDR and drug-susceptible isolates. These differential proteins can be classified into six groups: a. proteins related to antibiotic resistance, b. membrane proteins, membrane transporters and proteins related to membrane formation, c. Stress response-related proteins, d. proteins related to gene expression and protein translation, e. metabolism-related proteins, f. proteins with unknown function or other functions containing biofilm formation and virulence. In addition, we verified seven proteins at the transcription level in eight clinical isolates by using quantitative RT-PCR. Results showed that four of the selected proteins have positive correlations with the protein level. This study provided an insight into the mechanism of antibiotic resistance of multidrug-resistant Acinetobacter baumannii.


Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial.

  • Bihua Han‎ et al.
  • The Lancet. Infectious diseases‎
  • 2021‎

A vaccine against SARS-CoV-2 for children and adolescents will play an important role in curbing the COVID-19 pandemic. Here we aimed to assess the safety, tolerability, and immunogenicity of a candidate COVID-19 vaccine, CoronaVac, containing inactivated SARS-CoV-2, in children and adolescents aged 3-17 years.


Succession of Gut Microbial Structure in Twin Giant Pandas During the Dietary Change Stage and Its Role in Polysaccharide Metabolism.

  • Mingye Zhan‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Adaptation to a bamboo diet is an essential process for giant panda growth, and gut microbes play an important role in the digestion of the polysaccharides in bamboo. The dietary transition in giant panda cubs is particularly complex, but it is an ideal period in which to study the effects of gut microbes on polysaccharide use because their main food changes from milk to bamboo (together with some bamboo shoot and coarse pastry). Here, we used 16S rDNA and internal transcribed spacer 1 (ITS1) DNA sequencing and metagenomic sequencing analysis to investigate the succession of the gut microbial structure in feces sampled from twin giant panda cubs during the completely dietary transition and determine the abundances of polysaccharide-metabolizing genes and their corresponding microbes to better understand the degradation of bamboo polysaccharides. Successive changes in the gut microbial diversity and structure were apparent in the growth of pandas during dietary shift process. Microbial diversity increased after the introduction of supplementary foods and then varied in a complex way for 1.5-2 years as bamboo and complex food components were introduced. They then stabilized after 2 years, when the cubs consumed a specialized bamboo diet. The microbes had more potential to metabolize the cellulose in bamboo than the hemicellulose, providing genes encoding cellulase systems corresponding to glycoside hydrolases (GHs; such as GH1, GH3, GH5, GH8, GH9, GH74, and GH94). The cellulose-metabolizing species (or genes) of gut bacteria was more abundant than that of gut fungi. Although cellulose-metabolizing species did not predominate in the gut bacterial community, microbial interactions allowed the giant pandas to achieve the necessary dietary shift and ultimately adapt to a bamboo diet.


Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial.

  • Feng-Cai Zhu‎ et al.
  • Lancet (London, England)‎
  • 2020‎

A vaccine to protect against COVID-19 is urgently needed. We aimed to assess the safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 (Ad5) vectored COVID-19 vaccine expressing the spike glycoprotein of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain.


Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial.

  • Zhiwei Wu‎ et al.
  • The Lancet. Infectious diseases‎
  • 2021‎

A vaccine against COVID-19 is urgently needed for older adults, in whom morbidity and mortality due to the disease are increased. We aimed to assess the safety, tolerability, and immunogenicity of a candidate COVID-19 vaccine, CoronaVac, containing inactivated SARS-CoV-2, in adults aged 60 years and older.


Characterization of Esterase Genes Involving Malathion Detoxification and Establishment of an RNA Interference Method in Liposcelis bostrychophila.

  • Dan-Dan Wei‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Esterases (ESTs) play important roles in metabolizing various physiologically endogenous and exogenous compounds, and various environmental xenobiotics in insects. The psocid, Liposcelis bostrychophila is a major pest of stored products worldwide and rapidly develops resistance to commonly insecticides. However, the involvement of ESTs in insecticide metabolization and the application of RNAi approach in psocids have not been well elucidated. In this study, we characterized four LbEST genes and investigated the transcriptional levels of these genes at different developmental stages and under different insecticides exposures to assess their potential roles in response to insecticides. The four LbESTs contain a catalytic triad (Ser-His-Glu) linked to an oxyanion hole and acyl pocket involved in substrate stabilization during its hydrolysis. Synergism observed with the esterase-inhibitor DEF suggests the involvement of esterases in malathion detoxification. LbESTs were expressed during the whole of developmental stages, but predominant abundance in the first nymphal instar and adult stage. The mRNA level of three LbEST genes (except for LbEST4) was induced (1.29- to 5.60 fold) in response to malathion or deltamethrin exposures, indicating that these esterases are involved in the detoxification process. Silencing of LbEST1, LbEST2 or LbEST3 through dsRNA feeding led to a higher mortality of psocids upon the malathion treatment compared to controls (1.83 to 2.69-fold), demonstrating that these esterase genes play roles in malathion detoxification in L. bostrychophila. Our study provides new evidence for understanding of the function and regulation mechanism of esterases in L. bostrychophila in insecticide detoxification. The current study also suggests that the present RNAi method could be applied for gene functional studies in psocids.


Immunogenicity and safety of a third dose of CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: interim results from two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials.

  • Gang Zeng‎ et al.
  • The Lancet. Infectious diseases‎
  • 2022‎

Large-scale vaccination against COVID-19 is being implemented in many countries with CoronaVac, an inactivated vaccine. We aimed to assess the immune persistence of a two-dose schedule of CoronaVac, and the immunogenicity and safety of a third dose of CoronaVac, in healthy adults aged 18 years and older.


Safety of the Salmonella enterica serotype Dublin strain Sdu189-derived live attenuated vaccine-A pilot study.

  • Fuzhong Wang‎ et al.
  • Frontiers in veterinary science‎
  • 2022‎

Salmonella enterica serovar Dublin (S. Dublin) is an important zoonotic pathogen with high invasiveness. In the prevention and control of the Salmonella epidemic, the live attenuated vaccine plays a very important role. To prevent and control the epidemic of S. Dublin in cattle farms, the development of more effective vaccines is necessary. In this study, we constructed two gene deletion mutants, Sdu189ΔspiC and Sdu189ΔspiCΔaroA, with the parental strain S. Dublin Sdu189. The immunogenicity and protective efficacy were evaluated in the mice model. First, both mutant strains were much less virulent than the parental strain, as determined by the 50% lethal dose (LD50) for specific pathogen-free (SPF) 6-week-old female BALB/c mice. Second, the specific IgG antibody level and the expression level of cytokine TNF-α, IFN-γ, IL-4, and IL-18 were increased significantly in the vaccinated mice compared to the control group. In addition, the deletion strains were cleared rapidly from organs of immunized mice within 14 d after immunization, while the parental strain could still be detected in the spleen and liver after 21 d of infection. Compared with the parental strain infected group, no obvious lesions were detected in the liver, spleen, and cecum of the deletion strain vaccinated groups of mice. Immunization with Sdu189ΔspiC and Sdu189ΔspiCΔaroA both provided 100% protection against subsequent challenges with the wild-type Sdu189 strain. These results demonstrated that these two deletion strains showed the potential as live attenuated vaccines against S. Dublin infection. The present study established a foundation for screening a suitable live attenuated Salmonella vaccine.


Short-Chain Inulin Modulates the Cecal Microbiota Structure of Leptin Knockout Mice in High-Fat Diet.

  • Yan Feng‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

The aim of this study was to explore the effect of short-chain inulin on cecal microbiota of high-fat diet-fed leptin knockout mice and the different influences of cecal microbiota on wild-type and leptin knockout mice. A total of 18 specific pathogen-free male C57BL/6J wild-type mice and 18 C57BL/6J leptin knockout mice (OB/OB mice) were selected. Mice were divided into six groups according to their genotype: wild-type mice have three groups, including the normal diet group (CT), 60% high-fat diet group (CH), and 60% high fat with 10% short-chain inulin group (CHI); OB/OB mice were also divided into three groups, including the normal diet group (OT), 60% high-fat diet group (OH), and 60% high fat with 10% short-inulin group (OHI). The mice were fed for 8 weeks to analyze the diversity of cecal microbiota. The results show that compared with CH and OH, the variety of cecal microbiota was significantly reduced in CH and OH and further reduced in CHI and OHI. Bifidobacterium and Lactobacillus are the biomarkers in genus level. Dietary short-chain inulin significantly enhanced Bifidobacterium in OHI compared with OH (p < 0.01) and significantly reduced in CHI and compared with CH (p < 0.01). Lactobacillus was significantly enhanced in CHI and OHI compared with CH and OH, respectively (p < 0.01). Blautia was significantly enhanced in CH and OH compared with other groups (p < 0.01). Both Escherichia-Shigella and Enterococcus were significantly reduced in CHI and OHI, compared with CH and OH, respectively (p < 0.05). Escherichia-Shigella was even lower than CT and OT in CHI and OHI. Functional prediction of microbial communities showed that the abundance of amino acid sugar and nucleotide sugar metabolism pathways were significantly enhanced (p < 0.05) in CH and OH, and OH was significantly higher than CH (p < 0.05). Among the leptin knockout groups, PICRUSt2 function prediction showed that the fatty acid metabolism pathway significantly reduced (p < 0.05) in OHI and OT compared with OH. In conclusion, short-chain inulin modulated the dysbiosis induced by high-fat diet, improved probiotics growth and inhibited conditioned pathogenic bacteria, and the influences were significantly different in wild-type and leptin knockout mice.


Real-time imaging of epileptic seizures in rats using electrical impedance tomography.

  • Lei Wang‎ et al.
  • Neuroreport‎
  • 2017‎

The presence of multiple or diffuse lesions on imaging is a contraindication to surgery for patients with intractable epilepsy. Theoretically, as a functional imaging technique, electrical impedance tomography (EIT) can accurately image epileptic foci. However, most current studies are limited to examining epileptic spikes and few studies use EIT for real-time imaging of seizure activity. Moreover, little is known about changes in electrical impedance during seizures. In this study, we used EIT to monitor seizure progression in real time and analyzed changes in electrical impedance during seizures. EIT and electroencephalography data were recorded simultaneously in rats. Sixty-three seizures were recorded from the cortices of eight rats. During 54 seizures, the average impedance decreased by between 4.86 and 9.17% compared with the baseline. Compared with the control group, the average impedance of the experimental group decreased significantly (P=0.004). Our results indicate that EIT can be used to detect and image electrical impedance reduction within lesions during epileptic seizures.


Transcriptome profiling of the Plutella xylostella (Lepidoptera: Plutellidae) ovary reveals genes involved in oogenesis.

  • Lu Peng‎ et al.
  • Gene‎
  • 2017‎

As a specialized organ, the insect ovary performs valuable functions by ensuring fecundity and population survival. Oogenesis is the complex physiological process resulting in the production of mature eggs, which are involved in epigenetic programming, germ cell behavior, cell cycle regulation, etc. Identification of the genes involved in ovary development and oogenesis is critical to better understand the reproductive biology and screening for the potential molecular targets in Plutella xylostella, a worldwide destructive pest of economically major crops.


Low-dose dobutamine cardiovascular magnetic resonance segmental strain study of early phase of intramyocardial hemorrhage rats.

  • Rui Xia‎ et al.
  • BMC medical imaging‎
  • 2021‎

This study investigates the segmental myocardial strain of the early phase of intramyocardial hemorrhage (IMH) caused by reperfused myocardial infarction (MI) in rats by low-dose dobutamine (LDD) cardiovascular magnetic resonance (CMR) feature-tracking.


Effects of cyclin-dependent kinase 8 specific siRNA on the proliferation and apoptosis of colon cancer cells.

  • Song-Bing He‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2011‎

To investigate the expression of cyclin-dependent kinase 8 (CDK8) and β-catenin in colon cancer and evaluate the role of CDK8 in the proliferation, apoptosis and cell cycle progression of colon cancer cells, especially in HCT116 cell line.


Bioactive Effects of Low-Temperature Argon-Oxygen Plasma on a Titanium Implant Surface.

  • Lei Wang‎ et al.
  • ACS omega‎
  • 2020‎

Although titanium is the most commonly used dental implant material, its biological aging directly leads to a lower rate of osseointegration. The aim of this study is to treat aged titanium disc surfaces using low-temperature argon-oxygen plasma (LTAOP) to obtain a more hydrophilic surface in order to enhance biological activities of osteoblasts on dental implant materials. In this study, smooth-machined titanium (SM Ti) and sandblasted and acid-etched titanium (SLA Ti) substrates were used. Aged titanium discs (SM and SLA Ti) were activated by LTAOP and the surface properties were analyzed. Osteoblasts were then seeded onto the aged and LTAOP-treated surfaces. Cell morphology, viability, and features of osteogenesis were examined. We showed that after the LTAOP treatment, the surfaces of both SM and SLA titanium substrates become more hydrophilic with a larger active oxygen species composition, whereas no obvious morphological changes were observed. Osteoblasts were found to be attached and stretched well on the surfaces of LTAOP treatment specimens. Moreover, the proliferation and osteocalcin secretion of osteoblasts on the plasma-activated titanium samples were superior to the untreated counterparts. LTAOP activation can enhance the attachment, proliferation, and mineralization of osteoblasts on the surfaces of the aged titanium substrates. This research provides a new strategy to modify the surface of titanium dental implants for improved biological functions.


3-(1H-Benzo[d]imidazol-6-yl)-5-(4-fluorophenyl)-1,2,4-oxadiazole (DDO7232), a Novel Potent Nrf2/ARE Inducer, Ameliorates DSS-Induced Murine Colitis and Protects NCM460 Cells against Oxidative Stress via ERK1/2 Phosphorylation.

  • Li-Li Xu‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2018‎

Ulcerative colitis (UC) is a common inflammatory bowel disease that can destroy the integrity of the colon and increase the risk of colorectal cancer. Oxidative stress is one of the critical pathogenic factors for UC, further impairing the entire affected colon. The Nrf2-ARE signaling pathway plays an important role in counteracting oxidative and electrophilic stress. Activation of the Nrf2-ARE pathway provides an indispensable defense mechanism for the treatment of UC. In this study, we identified a novel effective Nrf2 activator, DDO7232, which showed protective effects on NCM460 cells and therapeutic effects on DSS-induced colitis in mice. Mechanistic studies indicated that the Nrf2-ARE-inducing activity of DDO7232 was based on the activation of the ERK1/2 phosphorylation. The phosphorylation of Nrf2 Ser40 by p-ERK triggered the transport of Nrf2 into the nucleus and drove the expression of Nrf2-dependent antioxidant proteins. These results not only revealed the antioxidant mechanisms of DDO7232 but also provided an effective therapeutic option for the treatment of UC.


Ginsenoside Rb1 Ameliorates Diabetic Arterial Stiffening via AMPK Pathway.

  • Xinyu Zhang‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Background and Purpose: Macrovascular complication of diabetes mellitus, characterized by increased aortic stiffness, is a major cause leading to many adverse clinical outcomes. It has been reported that ginsenoside Rb1 (Rb1) can improve glucose tolerance, enhance insulin activity, and restore the impaired endothelial functions in animal models. The aim of this study was to explore whether Rb1 could alleviate the pathophysiological process of arterial stiffening in diabetes and its potential mechanisms. Experimental Approach: Diabetes was induced in male C57BL/6 mice by administration of streptozotocin. These mice were randomly selected for treatment with Rb1 (10-60 mg/kg, i. p.) once daily for 8 weeks. Aortic stiffness was assessed using ultrasound and measurement of blood pressure and relaxant responses in the aortic rings. Mechanisms of Rb1 treatment were studied in MOVAS-1 VSMCs cultured in a high-glucose medium. Key Results: Rb1 improved DM-induced arterial stiffening and the impaired aortic compliance and endothelium-dependent vasodilation. Rb1 ameliorated DM-induced aortic remodeling characterized by collagen deposition and elastic fibers disorder. MMP2, MMP9, and TGFβ1/Smad2/3 pathways were involved in this process. In addition, Rb1-mediated improvement of arterial stiffness was partly achieved via inhibiting oxidative stress in DM mice, involving regulating NADPH oxidase. Finally, Rb1 could blunt the inhibition effects of DM on AMPK phosphorylation. Conclusion and Implications: Rb1 may represent a novel prevention strategy to alleviate collagen deposition and degradation to prevent diabetic macroangiopathy and diabetes-related complications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: