Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Kind discrimination and competitive exclusion mediated by contact-dependent growth inhibition systems shape biofilm community structure.

  • Melissa S Anderson‎ et al.
  • PLoS pathogens‎
  • 2014‎

Contact-Dependent Growth Inhibition (CDI) is a phenomenon in which bacteria use the toxic C-terminus of a large exoprotein (called BcpA in Burkholderia species) to inhibit the growth of neighboring bacteria upon cell-cell contact. CDI systems are present in a wide range of Gram-negative proteobacteria and a hallmark feature is polymorphism amongst the exoprotein C-termini (BcpA-CT in Burkholderia) and amongst the small immunity proteins (BcpI) that protect against CDI in an allele-specific manner. In addition to CDI, the BcpAIOB proteins of Burkholderia thailandensis mediate biofilm formation, and they do so independent of BcpA-mediated interbacterial competition, suggesting a cooperative role for CDI system proteins in this process. CDI has previously only been demonstrated between CDI+ and CDI- bacteria, leaving the roles of CDI system-mediated interbacterial competition and of CDI system diversity in nature unknown. We constructed B. thailandensis strains that differed only in the BcpA-CT and BcpI proteins they produced. When co-cultured on agar, these strains each participated in CDI and the outcome of the competition depended on both CDI system efficiency and relative bacterial numbers initially. Strains also participated in CDI during biofilm development, resulting in pillar structures that were composed of only a single BcpA-CT/BcpI type. Moreover, a strain producing BcpA-CT/BcpI proteins of one type was prevented from joining a pre-established biofilm community composed of bacteria producing BcpA-CT/BcpI proteins of a different type, unless it also produced the BcpI protein of the established strain. Bacteria can therefore use CDI systems for kind recognition and competitive exclusion of 'non-self' bacteria from a pre-established biofilm. Our data indicate that CDI systems function in both cooperative and competitive behaviors to build microbial communities that are composed of only bacteria that are related via their CDI system alleles.


Burkholderia multivorans requires species-specific GltJK for entry of a contact-dependent growth inhibition system protein.

  • Tanya Myers-Morales‎ et al.
  • Molecular microbiology‎
  • 2021‎

Interbacterial antagonism and communication are driving forces behind microbial community development. In many Gram-negative bacteria, contact-dependent growth inhibition (CDI) systems contribute to these microbial interactions. CDI systems deliver the toxic C-terminus of a large surface exposed protein to the cytoplasm of neighboring bacteria upon cell-contact. Termed the BcpA-CT, import of this toxic effector domain is mediated by specific, yet largely unknown receptors on the recipient cell outer and inner membranes. In this study, we demonstrated that cytoplasmic membrane proteins GltJK, components of a predicted ABC-type transporter, are required for entry of CDI system protein BcpA-2 into Burkholderia multivorans recipient cells. Consistent with current CDI models, gltJK were also required for recipient cell susceptibility to a distinct BcpA-CT that shared sequences within the predicted "translocation domain" of BcpA-2. Strikingly, this translocation domain showed low sequence identity to the analogous region of an Escherichia coli GltJK-utilizing CDI system protein. Our results demonstrated that recipient bacteria expressing E. coli gltJK were resistant to BcpA-2-mediated interbacterial antagonism, suggesting that BcpA-2 specifically recognizes Burkholderia GltJK. Using a series of chimeric proteins, the specificity determinant was mapped to Burkholderia-specific sequences at the GltK C-terminus, providing insight into BcpA transport across the recipient cell cytoplasmic membrane.


The Burkholderia bcpAIOB genes define unique classes of two-partner secretion and contact dependent growth inhibition systems.

  • Melissa S Anderson‎ et al.
  • PLoS genetics‎
  • 2012‎

Microbes have evolved many strategies to adapt to changes in environmental conditions and population structures, including cooperation and competition. One apparently competitive mechanism is contact dependent growth inhibition (CDI). Identified in Escherichia coli, CDI is mediated by Two-Partner Secretion (TPS) pathway proteins, CdiA and CdiB. Upon cell contact, the toxic C-terminus of the TpsA family member CdiA, called the CdiA-CT, inhibits the growth of CDI(-) bacteria. CDI(+) bacteria are protected from autoinhibition by an immunity protein, CdiI. Bioinformatic analyses indicate that CDI systems are widespread amongst α, β, and γ proteobacteria and that the CdiA-CTs and CdiI proteins are highly variable. CdiI proteins protect against CDI in an allele-specific manner. Here we identify predicted CDI system-encoding loci in species of Burkholderia, Ralstonia and Cupriavidus, named bcpAIOB, that are distinguished from previously-described CDI systems by gene order and the presence of a small ORF, bcpO, located 5' to the gene encoding the TpsB family member. A requirement for bcpO in function of BcpA (the TpsA family member) was demonstrated, indicating that bcpAIOB define a novel class of TPS system. Using fluorescence microscopy and flow cytometry, we show that these genes are expressed in a probabilistic manner during culture of Burkholderia thailandensis in liquid medium. The bcpAIOB genes and extracellular DNA were required for autoaggregation and adherence to an abiotic surface, suggesting that CDI is required for biofilm formation, an activity not previously attributed to CDI. By contrast to what has been observed in E. coli, the B. thailandensis bcpAIOB genes only mediated interbacterial competition on a solid surface. Competition occurred in a defined spatiotemporal manner and was abrogated by allele-specific immunity. Our data indicate that the bcpAIOB genes encode distinct classes of CDI and TPS systems that appear to function in sociomicrobiological community development.


Recipient Cell Factors Influence Interbacterial Competition Mediated by Two Distinct Burkholderia dolosa Contact-Dependent Growth Inhibition Systems.

  • Zaria K Elery‎ et al.
  • Journal of bacteriology‎
  • 2022‎

Contact-dependent growth inhibition (CDI) systems mediate interbacterial antagonism between Gram-negative bacteria by delivering the toxic portion of a large surface protein (termed BcpA in Burkholderia species) to the cytoplasm of neighboring bacteria. Translocation of the antibacterial polypeptide into recipient cells requires specific recipient outer and inner membrane proteins, but the identity of these factors outside several model organisms is unknown. To identify genes involved in CDI susceptibility in the Burkholderia cepacia complex member Burkholderia dolosa, a transposon mutagenesis selection approach was used to enrich for mutants resistant to BcpA-1 or BcpA-2. Subsequent analysis showed that candidate regulatory genes contributed modestly to recipient cell susceptibility to B. dolosa CDI. However, most candidate deletion mutants did not show the same phenotypes as the corresponding transposon mutants. Whole-genome resequencing revealed that these transposon mutants also contained unique mutations within a three gene locus (wabO, BDAG_01006, and BDAG_01005) encoding predicted lipopolysaccharide (LPS) biosynthesis enzymes. B. dolosa wabO, BDAG_01006, or BDAG_01005 mutants were resistant to CDI and produced LPS with altered core oligosaccharide and O-antigen. Although BcpA-1 and BcpA-2 are dissimilar and expected to utilize different outer membrane receptors, intoxication by both proteins was similarly impacted by LPS changes. Together, these findings suggest that alterations in cellular regulation may indirectly impact the efficiency of CDI-mediated competition and demonstrate that LPS is required for intoxication by two distinct B. dolosa BcpA proteins. IMPORTANCEContact-dependent growth inhibition (CDI) system proteins, produced by many Gram-negative bacteria, are narrow spectrum antimicrobials that inhibit the growth of closely related neighboring bacteria. Here, we use the opportunistic pathogen Burkholderia dolosa to identify genes required for intoxication by two distinct CDI system proteins. Our findings suggest that B. dolosa recipient cells targeted by CDI systems are only intoxicated if they produce full-length lipopolysaccharide. Understanding the mechanisms underlying antagonistic interbacterial interactions may contribute to future therapeutic development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: