2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 58 papers

Genome sequence of walking catfish (Clarias batrachus) provides insights into terrestrial adaptation.

  • Ning Li‎ et al.
  • BMC genomics‎
  • 2018‎

Walking catfish (Clarias batrachus) is a freshwater fish capable of air-breathing and locomotion on land. It usually inhabits various low-oxygen habitats, burrows inside the mudflat, and sometimes "walks" to search for suitable environments during summer. It has evolved accessory air-breathing organs for respiring air and corresponding mechanisms to survive in such challenging environments. Thereby, it serves as a great model for understanding adaptations to terrestrial life.


Whole Genomic Sequence Analysis of Human Adenovirus Species C Shows Frequent Recombination in Tianjin, China.

  • Yue Lei‎ et al.
  • Viruses‎
  • 2023‎

Human adenovirus species C (HAdV-C) is frequently detected in China and worldwide. For the first time, 16 HAdV-C strains were isolated from sewage water (14 strains) and hospitalised children with diarrhoea (2 strains,) in Tianjin, China. Nearly complete genome data were successfully obtained for these viruses. Subsequently, genomic and bioinformatics analyses of the 16 HAdV-C strains were performed. A phylogenetic tree of the complete HAdV-C genome divided these strains into three types: HAdV-C1, HAdV-C2, HAdV-C5. Phylogenetic analysis based on the fiber gene showed similar outcomes to analyses of the hexon gene and complete HAdV-C genomes, whereas the penton gene sequences showed more variation than previously reported. Furthermore, analysis of the whole-genome sequencing revealed seven recombination patterns transmitted in Tianjin, of which at least four patterns have not been previously reported. However, the penton base gene sequences of the HAdV-C species had significantly lower heterogeneity than those of the hexon and fiber gene sequences of recombinant isolates; that is, many strains were distinct in origin, but shared hexon and fiber genes. These data illustrate the importance of frequent recombination in the complexity of the HAdV-C epidemic in Tianjin, thus emphasising the necessity for HAdV-C sewage and virological monitoring in China.


The Y chromosome sequence of the channel catfish suggests novel sex determination mechanisms in teleost fish.

  • Lisui Bao‎ et al.
  • BMC biology‎
  • 2019‎

Sex determination mechanisms in teleost fish broadly differ from mammals and birds, with sex chromosomes that are far less differentiated and recombination often occurring along the length of the X and Y chromosomes, posing major challenges for the identification of specific sex determination genes. Here, we take an innovative approach of comparative genome analysis of the genomic sequences of the X chromosome and newly sequenced Y chromosome in the channel catfish.


Multilocus sequence analysis for assessment of phylogenetic diversity and biogeography in Thalassospira bacteria from diverse marine environments.

  • Qiliang Lai‎ et al.
  • PloS one‎
  • 2014‎

Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16-97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76-97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments.


Ancient mitogenomes reveal a high maternal genetic diversity of Pleistocene woolly rhinoceros in Northern China.

  • Junxia Yuan‎ et al.
  • BMC ecology and evolution‎
  • 2023‎

Woolly rhinoceros (Coelodonta antiquitatis) is a typical indicator of cold-stage climate that was widely distributed in Northern Hemisphere during the Middle-Late Pleistocene. Although a plethora of fossils have been excavated from Northern China, their phylogenetic status, intraspecific diversity and phylogeographical structure are still vague.


Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication.

  • Paul Peixoto‎ et al.
  • Nucleic acids research‎
  • 2008‎

The development of small molecules to control gene expression could be the spearhead of future-targeted therapeutic approaches in multiple pathologies. Among heterocyclic dications developed with this aim, a phenyl-furan-benzimidazole dication DB293 binds AT-rich sites as a monomer and 5'-ATGA sequence as a stacked dimer, both in the minor groove. Here, we used a protein/DNA array approach to evaluate the ability of DB293 to specifically inhibit transcription factors DNA-binding in a single-step, competitive mode. DB293 inhibits two POU-domain transcription factors Pit-1 and Brn-3 but not IRF-1, despite the presence of an ATGA and AT-rich sites within all three consensus sequences. EMSA, DNase I footprinting and surface-plasmon-resonance experiments determined the precise binding site, affinity and stoichiometry of DB293 interaction to the consensus targets. Binding of DB293 occurred as a cooperative dimer on the ATGA part of Brn-3 site but as two monomers on AT-rich sites of IRF-1 sequence. For Pit-1 site, ATGA or AT-rich mutated sequences identified the contribution of both sites for DB293 recognition. In conclusion, DB293 is a strong inhibitor of two POU-domain transcription factors through a cooperative binding to ATGA. These findings are the first to show that heterocyclic dications can inhibit major groove transcription factors and they open the door to the control of transcription factors activity by those compounds.


Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima).

  • Yu Xing‎ et al.
  • GigaScience‎
  • 2019‎

The Chinese chestnut (Castanea mollissima) is widely cultivated in China for nut production. This plant also plays an important ecological role in afforestation and ecosystem services. To facilitate and expand the use of C. mollissima for breeding and its genetic improvement, we report here the whole-genome sequence of C. mollissima.


Identification and physiological function of CsPrip, a new aquaporin in Chilo suppressalis.

  • Ming-Xing Lu‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Aquaporin (AQP) transport solutes across cell membranes in both unicellular and multicellular organisms. In this study, the aquaporin CsPrip was identified in Chilo suppressalis, an important pest of rice. CsPrip was comprised of two variants, CsPrip_v1 and CsPrip_v2; the former variant was <103 bp was shorter than the latter, although both exhibited the same open reading frame (ORF). Transmembrane topology and protein structure analyses showed that CsPrip retained the conserved features of water-selective insect AQPs, including six transmembrane domains, two conserved hydrophobic asparagine-proline-alanine motifs and the aromatic/arginine constriction region. Expression in Xenopus oocytes revealed that CsPrip preferentially transported water and urea instead of trehalose and glycerol. The CsPrip transcript was expressed in multiple organs and tissues of C. suppressalis larvae and was most abundant in the hindgut and Malpighian tubules. CsPrip transcription was highest in male adults and was relatively stable throughout development. CsPrip expression in larvae was significantly altered by thermal stress, and relative humidity levels impacted CsPrip transcription in 3rd and 5th instar larvae. This study confirms that the aquaporin CsPrip performs multiple critical functions in maintaining water equilibrium in C. suppressalis.


Molecular Analysis of East African Lumpy Skin Disease Viruses Reveals a Mixed Isolate with Features of Both Vaccine and Field Isolates.

  • Tesfaye Rufael Chibssa‎ et al.
  • Microorganisms‎
  • 2021‎

Lumpy skin disease (LSD), an economically significant disease in cattle caused by lumpy skin disease virus (LSDV), is endemic to nearly all of Africa. Since 2012, LSDV has emerged as a significant epizootic pathogen given its rapid spread into new geographical locations outside Africa, including the Middle East, Eastern Europe, and Asia. To assess the genetic diversity of LSDVs in East Africa, we sequenced and analyzed the RPO30 and GPCR genes of LSDV in twenty-two archive samples collected in Ethiopia, Kenya, and Sudan before the appearance of LSD in the Middle East and its incursion into Europe. We compared them to publicly available sequences of LSDVs from the same region and those collected elsewhere. The results showed that the East African field isolates in this study were remarkably similar to each other and to previously sequenced field isolates of LSDV for the RPO30 and GPCR genes. The only exception was LSDV Embu/B338/2011, a field virus collected in Kenya, which displayed mixed features between the LSDV Neethling vaccine and field isolates. LSDV Embu/B338/2011 had the same 12-nucleotide insertion found in LSDV Neethling and KS-1 vaccines. Further analysis of the partial EEV glycoprotein, B22R, RNA helicase, virion core protein, NTPase, and N1R/p28-like protein genes showed that LSDV Embu/B338/2011 differs from previously described LSDV variants carrying the 12-nucleotide insertion in the GPCR gene. These findings highlight the importance of the constant monitoring of genetic variation among LSDV isolates.


A mouse tissue transcription factor atlas.

  • Quan Zhou‎ et al.
  • Nature communications‎
  • 2017‎

Transcription factors (TFs) drive various biological processes ranging from embryonic development to carcinogenesis. Here, we employ a recently developed concatenated tandem array of consensus TF response elements (catTFRE) approach to profile the activated TFs in 24 adult and 8 fetal mouse tissues on proteome scale. A total of 941 TFs are quantitatively identified, representing over 60% of the TFs in the mouse genome. Using an integrated omics approach, we present a TF network in the major organs of the mouse, allowing data mining and generating knowledge to elucidate the roles of TFs in various biological processes, including tissue type maintenance and determining the general features of a physiological system. This study provides a landscape of TFs in mouse tissues that can be used to elucidate transcriptional regulatory specificity and programming and as a baseline that may facilitate understanding diseases that are regulated by TFs.


Gene map of large yellow croaker (Larimichthys crocea) provides insights into teleost genome evolution and conserved regions associated with growth.

  • Shijun Xiao‎ et al.
  • Scientific reports‎
  • 2015‎

The genetic map of a species is essential for its whole genome assembly and can be applied to the mapping of important traits. In this study, we performed RNA-seq for a family of large yellow croakers (Larimichthys crocea) and constructed a high-density genetic map. In this map, 24 linkage groups comprised 3,448 polymorphic SNP markers. Approximately 72.4% (2,495) of the markers were located in protein-coding regions. Comparison of the croaker genome with those of five model fish species revealed that the croaker genome structure was closer to that of the medaka than to the remaining four genomes. Because the medaka genome preserves the teleost ancestral karyotype, this result indicated that the croaker genome might also maintain the teleost ancestral genome structure. The analysis also revealed different genome rearrangements across teleosts. QTL mapping and association analysis consistently identified growth-related QTL regions and associated genes. Orthologs of the associated genes in other species were demonstrated to regulate development, indicating that these genes might regulate development and growth in croaker. This gene map will enable us to construct the croaker genome for comparative studies and to provide an important resource for selective breeding of croaker.


Comparative genomic analysis of rapid evolution of an extreme-drug-resistant Acinetobacter baumannii clone.

  • Sean Yang-Yi Tan‎ et al.
  • Genome biology and evolution‎
  • 2013‎

The emergence of extreme-drug-resistant (EDR) bacterial strains in hospital and nonhospital clinical settings is a big and growing public health threat. Understanding the antibiotic resistance mechanisms at the genomic levels can facilitate the development of next-generation agents. Here, comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU within a 1-month interval. Multilocus sequence typing indicates that these two isolates belonged to ST208. The A. baumannii 53264 strain gained colistin resistance compared with the 48055 strain and became an EDR strain. Genome sequencing indicates that A. baumannii 53264 and 48055 have almost identical genomes-61 single-nucleotide polymorphisms (SNPs) were found between them. The A. baumannii 53264 strain was assembled into 130 contigs, with a total length of 3,976,592 bp with 38.93% GC content. The A. baumannii 48055 strain was assembled into 135 contigs, with a total length of 4,049,562 bp with 39.00% GC content. Genome comparisons showed that this A. baumannii clone is classified as an International clone II strain and has 94% synteny with the A. baumannii ACICU strain. The ResFinder server identified a total of 14 antibiotic resistance genes in the A. baumannii clone. Proteomic analyses revealed that a putative porin protein was down-regulated when A. baumannii 53264 was exposed to antimicrobials, which may reduce the entry of antibiotics into the bacterial cell.


Construction of a high-density microsatellite genetic linkage map and mapping of sexual and growth-related traits in half-smooth tongue sole (Cynoglossus semilaevis).

  • Wentao Song‎ et al.
  • PloS one‎
  • 2012‎

High-density genetic linkage maps of half-smooth tongue sole were developed with 1007 microsatellite markers, two SCAR markers and an F1 family containing 94. The female map was composed of 828 markers in 21 linkage groups, covering a total of 1447.3 cM, with an average interval 1.83 cM between markers. The male map consisted of 794 markers in 21 linkage groups, spanning 1497.5 cM, with an average interval of 1.96 cM. The female and male maps had 812 and 785 unique positions, respectively. The genome length of half-smooth tongue sole was estimated to be 1527.7 cM for the females and 1582.1 cM for the males. Based on estimations of the map lengths, the female and male maps covered 94.74 and 94.65% of the genome, respectively. The consensus map was composed of 1007 microsatellite markers and two SCAR markers in 21 linkage groups, covering a total of 1624 cM with an average interval of 1.67 cM. Furthermore, 159 sex-linked SSR markers were identified. Five sex-linked microsatellite markers were confirmed in their association with sex in a large number of individuals selected from different families. These sex-linked markers were mapped on the female map LG1f with zero recombination. Two QTLs that were identified for body weight, designated as We-1 and We-2, accounted for 26.39% and 10.60% of the phenotypic variation. Two QTLs for body width, designated Wi-1 and Wi-2, were mapped in LG4f and accounted for 14.33% and 12.83% of the phenotypic variation, respectively. Seven sex-related loci were mapped in LG1f, LG14f and LG1m by CIM, accounting for 12.5-25.2% of the trait variation. The results should prove to be very useful for improving growth traits using molecular MAS.


Chromosome-level genome assembly of the spotted alfalfa aphid Therioaphis trifolii.

  • Tianyu Huang‎ et al.
  • Scientific data‎
  • 2023‎

The spotted alfalfa aphid (SAA, Therioaphis trifolii) (Hemiptera: Aphididae) is a destructive pest of cultivated alfalfa (Medicago sativa L.) that leads to large financial losses in the livestock industry around the world. Here, we present a chromosome-scale genome assembly of T. trifolii, the first genome assembly for the aphid subfamily Calaphidinae. Using PacBio long-read sequencing, Illumina sequencing, and Hi-C scaffolding techniques, a 541.26 Mb genome was generated, with 90.01% of the assembly anchored into eight scaffolds, and the contig and scaffold N50 are 2.54 Mb and 44.77 Mb, respectively. BUSCO assessment showed a completeness score of 96.6%. A total of 13,684 protein-coding genes were predicted. The high-quality genome assembly of T. trifolii not only provides a genomic resource for the more complete analysis of aphid evolution, but also provides insights into the ecological adaptation and insecticide resistance of T. trifolii.


Chromosome-scale Genome assembly of the critically endangered White-eared Night-Heron (Gorsachius magnificus).

  • Chenqing Zheng‎ et al.
  • Scientific data‎
  • 2024‎

The White-eared Night-Heron (Gorsachius magnificus, G. magnificus) is a critically endangered heron that is very poorly known and only found in southern China and northern Vietnam, with an estimated population of 250 to 999 mature individuals. However, the lack of a reference genome has hindered the implementation of conservation management efforts. In this study, we present the first high-quality chromosome-scale reference genome, which was assembled by integrating PacBio long-reads sequencing, Illumina paired-end sequencing, and Hi-C technology. The genome has a total length of 1.176 Gb, with a scaffold N50 of 84.77 Mb and a contig N50 of 18.46 Mb. Utilizing Hi-C data, we anchored 99.89% of the scaffold sequences onto 29 pairs of chromosomes. Additionally, we identified 18,062 protein-coding genes in the genome, with 95.00% of which were functionally annotated. Notably, BUSCO assessment confirmed the presence of 97.2% of highly conserved Aves genes within the genome. This chromosome-level genome assembly and annotation will be valuable for future investigating the G. magnificus's evolutionary adaptation and conservation.


Massively parallel genomic perturbations with multi-target CRISPR interrogates Cas9 activity and DNA repair at endogenous sites.

  • Roger S Zou‎ et al.
  • Nature cell biology‎
  • 2022‎

Here we present an approach that combines a clustered regularly interspaced short palindromic repeats (CRISPR) system that simultaneously targets hundreds of epigenetically diverse endogenous genomic sites with high-throughput sequencing to measure Cas9 dynamics and cellular responses at scale. This massive multiplexing of CRISPR is enabled by means of multi-target guide RNAs (mgRNAs), degenerate guide RNAs that direct Cas9 to a pre-determined number of well-mapped sites. mgRNAs uncovered generalizable insights into Cas9 binding and cleavage, revealing rapid post-cleavage Cas9 departure and repair factor loading at protospacer adjacent motif-proximal genomic DNA. Moreover, by bypassing confounding effects from guide RNA sequence, mgRNAs unveiled that Cas9 binding is enhanced at chromatin-accessible regions, and cleavage by bound Cas9 is more efficient near transcribed regions. Combined with light-mediated activation and deactivation of Cas9 activity, mgRNAs further enabled high-throughput study of the cellular response to double-strand breaks with high temporal resolution, revealing the presence, extent (under 2 kb) and kinetics (~1 h) of reversible DNA damage-induced chromatin decompaction. Altogether, this work establishes mgRNAs as a generalizable platform for multiplexing CRISPR and advances our understanding of intracellular Cas9 activity and the DNA damage response at endogenous loci.


Preparation and pharmacokinetics in vivo of linarin solid dispersion and liposome.

  • Yingying Huang‎ et al.
  • Chinese herbal medicines‎
  • 2022‎

The current investigation aimed to determine the appropriate dosage form by comparing solid dispersion and liposome to achieve the purpose of improving the solubility and bioavailability of linarin.


The genome of Magnolia biondii Pamp. provides insights into the evolution of Magnoliales and biosynthesis of terpenoids.

  • Shanshan Dong‎ et al.
  • Horticulture research‎
  • 2021‎

Magnolia biondii Pamp. (Magnoliaceae, magnoliids) is a phylogenetically, economically, and medicinally important ornamental tree species widely grown and cultivated in the north-temperate regions of China. Determining the genome sequence of M. biondii would help resolve the phylogenetic uncertainty of magnoliids and improve the understanding of individual trait evolution within the Magnolia genus. We assembled a chromosome-level reference genome of M. biondii using ~67, ~175, and ~154 Gb of raw DNA sequences generated via Pacific Biosciences single-molecule real-time sequencing, 10X Genomics Chromium, and Hi-C scaffolding strategies, respectively. The final genome assembly was ~2.22 Gb, with a contig N50 value of 269.11 kb and a BUSCO complete gene percentage of 91.90%. Approximately 89.17% of the genome was organized into 19 chromosomes, resulting in a scaffold N50 of 92.86 Mb. The genome contained 47,547 protein-coding genes, accounting for 23.47% of the genome length, whereas 66.48% of the genome length consisted of repetitive elements. We confirmed a WGD event that occurred very close to the time of the split between the Magnoliales and Laurales. Functional enrichment of the Magnolia-specific and expanded gene families highlighted genes involved in the biosynthesis of secondary metabolites, plant-pathogen interactions, and responses to stimuli, which may improve the ecological fitness and biological adaptability of the lineage. Phylogenomic analyses revealed a sister relationship of magnoliids and Chloranthaceae, which are sister to a clade comprising monocots and eudicots. The genome sequence of M. biondii could lead to trait improvement, germplasm conservation, and evolutionary studies on the rapid radiation of early angiosperms.


Characterization of Fosfomycin Resistance Gene, fosB, in Methicillin-Resistant Staphylococcus aureus Isolates.

  • Zhuyingjie Fu‎ et al.
  • PloS one‎
  • 2016‎

To investigate the prevalence, location and genetic environments of fosfomycin-resistance (fos) genes in methicillin-resistant Staphylococcus aureus (MRSA) clinical strains, 67 fosfomycin-resistant MRSA strains were isolated from the blood and cerebrospinal fluid samples at a teaching hospital in Shanghai. The presence of fos genes in these clinical strains was detected by PCR and sequencing. The locations of fos genes were determined by Southern blotting and genetic environments were analyzed by primer walking sequencing. Multiple locus sequence typing (MLST) was used to characterize genetic diversity. Conjugation was performed to evaluate the transferability of fos genes. Among 67 fosfomycin-resistant MRSA strains, nine high level fosfomycin resistant strains (≥128 μg/ml) were fosB-positive. Three new subtypes of fosB, designated as fosB4, fosB5, and fosB6, were identified. fosB1, fosB4 or fosB6 genes were located on small plasmids (ca. 2.5 kb) and flanked by an analogous replication gene (rep). Differently, the fosB5 gene was surrounded by a shorter rep gene and two copies of a transposon gene (tnp) that shared high identity with the IS257-like transposon. Four MLST types were found among the nine fosB-positive strains. Transconjugants with the fosB genes were resistant to fosfomycin with MIC 64 or 128 μg/ml. In conclusion, different subtypes and genetic environment of fosB genes indicate that gene heterogeneity for fosfomycin resistance in MRSA isolates.


Genomic insights revealed the environmental adaptability of Planococcus halotolerans Y50 isolated from petroleum-contaminated soil on the Qinghai-Tibet Plateau.

  • Ruiqi Yang‎ et al.
  • Gene‎
  • 2022‎

The Tibetan Plateau niche provides unprecedented opportunities to find microbes that are functional and commercial significance. The present study investigated the physiological and genomic characteristics of Planococcus halotolerans Y50 that was isolated from a petroleum-contaminated soil sample from the Qinghai-Tibet Plateau, and it displayed psychrotolerant, antiradiation, and oil-degraded characteristics. Whole genome sequencing indicated that strain Y50 has a 3.52 Mb genome and 44.7% G + C content, and it possesses 3377 CDSs. The presence of a wide range of UV damage repair genes uvrX and uvsE, DNA repair genes radA and recN, superoxide dismutase, peroxiredoxin and dioxygenase genes provided the genomic basis for the adaptation of the plateau environment polluted by petroleum. Related experiments also verified that the Y50 strain could degrade n-alkanes from C11-C23, and approximately 30% of the total petroleum at 25 °C within 7 days. Meanwhile, strain Y50 could withstand 5 × 103 J/m2 UVC and 10 KGy gamma ray radiation, and it had strong antioxidant and high radical scavengers for superoxide anion, hydroxyl radical and DPPH. In addition, pan-genome analysis and horizontal gene transfers revealed that strains with different niches have obtained various genes through horizontal gene transfer in the process of evolution, and the more similar their geographical locations, the more similar their members are genetically and ecologically. In conclusion, P. halotolerans Y50 possesses high potential of applications in the bioremediation of alpine hydrocarbons contaminated environment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: