Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Transforming growth factor-β1 induces connective tissue growth factor expression and promotes peritoneal metastasis of gastric cancer.

  • Ling Lv‎ et al.
  • Bioscience reports‎
  • 2020‎

Transforming growth factor-β1 (TGF-β1) is involved in human cancer development and progression. Nonetheless, the role of TGF-β1 as regards peritoneal metastasis of gastric cancer has not been completely characterized. In the present study, we investigated the exact role of TGF-β1 on peritoneal metastasis of gastric cancer. The results indicated that human peritoneal mesothelial cells (HPMCs) exposed to TGF-β1 or serum-free conditional medium (SF-CM) of SGC7901 that produced a large amount of TGF-β1 became exfoliated, apoptosis and exhibited signs of injury, and the tumor-mesothelial cell adhesion significantly increased. Connective tissue growth factor (CTGF) expression was also increased when HPMCs were exposed to TGF-β1 or SF-CM of SGC7901. However, these effects were significantly decreased when HPMCs were exposed to SF-CM of SGC7901-TGFβS, a TGF-β1 knockdown stable cell line. Animal studies revealed that nude mice injected with SGC7901-TGFβS cells featured a smaller number of peritoneal seeding nodules and lower expression of CTGF in ascites than the control cell lines. These findings suggest that TGF-β1 promotes peritoneal metastasis of gastric cancer and induces CTGF expression. Therefore, blockage of TGF-β1 or TGF-β1 signaling pathway might prevent and treat peritoneal metastasis of gastric cancer.


TAZ promotes cell growth and inhibits Celastrol-induced cell apoptosis.

  • Shuren Wang‎ et al.
  • Bioscience reports‎
  • 2016‎

Hippo pathway is a highly conservative signalling pathway related to the development of organisms, which has been demonstrated to be strongly linked to the tumorigenesis and tumour progression. As the major downstream effector of Hippo pathway, yes-associated protein (YAP), is a transcriptional activator of target genes that are involved in cell proliferation and survival. As an oncogene, YAP can promote cell growth and inhibit cell apoptosis. Another major downstream effector of Hippo pathway, transcriptional co-activators with PDZ-binding motif (TAZ), is nearly 60% homologous with YAP. In the present study, we assume that TAZ probably has the similar function to YAP. To test this issue, we established an inducible and a stable expression system of TAZ in T-Rex-293 and HEK293 cells respectively. The results of cell growth curves, colony formation assay and tumour xenograft growth showed that overexpression of TAZ could promote cell growth in vitro and in vivo Meanwhile, we found that up-regulated expression of TAZ could partially restore Celastrol-induced cell apoptosis. Induced overexpression of TAZ could up-regulate its target genes including ankyrin repeat domain-containing protein (ANKRD), cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF), increase the expression of B-cell lymphoma-2 (Bcl-2), decrease the expression of Bcl-2 associated X protein (Bax) and activate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, which may be the mechanism underlying anti-apoptosis of TAZ. All these findings indicated that TAZ acts as an oncogene that could be a key regulator of cell proliferation and apoptosis.


Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages.

  • Xihang Chen‎ et al.
  • Bioscience reports‎
  • 2019‎

Background: There is a clinical need for the use of engineered adipose tissue in place of surgical reconstruction. We previously found that the external volume expansion (EVE) device increased special cell clusters in well-vascularized connective stroma during adipose regeneration. However, the origin of these cell clusters and their role in adipose tissue regeneration remain unknown. Aim: In the present study, we evaluated EVE in the construction of expanded prefabricated adipose tissue (EPAT) in a rat model. Methods: Rats were randomized into an EVE suction group and a control group, with 24 rats in each group. The structure and origin of the special cell clusters were determined by hematoxylin and eosin staining, and immunohistochemistry; their role in adipose tissue regeneration was investigated by immunohistochemistry and Western blot analyses. Results: Special cell clusters began to increase at week 1 with a peak at week 4, and then receded from weeks 8 to 12. Clusters were identified as glandular epithelial cells as determined by their gland-like structure and expression of specific markers. The cell clusters induced significant infiltration of macrophage antigen-2 (Mac-2) positive macrophages by secreting monocyte chemoattractant protein-1 (MCP-1) at the early stage of suction. Subsequently, these infiltrated macrophages expressed massive vascular endothelial growth factor (VEGF) to promoted angiogenesis. Conclusion: EVE generated glandular epithelial cell clusters, which recruited macrophages to promote angiogenesis and subsequent adipose tissue regeneration. These findings shed light on the mechanisms underlying the effects of EVE devices on adipose tissue regeneration.


Role of the prostaglandin E2 receptor agonists in TGF-β1-induced mesangial cell damage.

  • Pei-Pei Xi‎ et al.
  • Bioscience reports‎
  • 2016‎

PGE2 exerts its biological effect through binding to various EP receptors that result inactivation of various signal transduction pathways. It also plays an important role in mice glomerular mesangial cells (MCs) damage induced by transforming growth factor-β1 (TGF-β1); however, the molecular mechanisms remain unknown. In the present study, we tested the efficacy of four selective agonists of PGE2 receptor, EP1A (17-phenyl trinor prostaglandin E2 ethyl amid), EP2A (butaprost), EP3A (sulprostone) and EP4A (cay10580), on mice MCs. Compared with the cAMP produced by TGF-β1, additional pretreatment of EP3A decreased the cAMP level. MCs treated with EP1A and EP3A augmented PGE2, cyclooxygenase-2 (COX-2), membrane-bound PGE synthase 1 (mPGES1), laminin (LN), connective tissue growth factor (CTGF) and cyclin D1 expression stimulated by TGFβ1. EP1A and EP3A increased the number of cells in S+G2/M phase and reduced cells in G0/G1 phase. EP1 and EP3 agonists also strengthened TGFβ1-induced mitogen-activated protein kinase (p38MAPK) and extracellular-signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Whereas MCs treated with EP2A and EP4A weakened PGE2, COX-2, mPGES1, LN, CTGF and cyclin D1 expression stimulated by TGFβ1. EP2A and EP4A decreased the number of cells in S+G2/M phase and increased cells in G0/G1 phase. EP2 and EP4 agonists weakened TGFβ1-induced p38MAPK and ERK1/2 phosphorylation. These findings suggest that PGE2 has an important role in the progression of kidney disease via the EP1/EP3 receptor, whereas EP2 and EP4 receptors are equally important in preserving the progression of chronic kidney failure. Thus, agonists of EP2 and EP4 receptors may provide a basis for treating kidney damage induced by TGF-β1.


Neupogen and mesenchymal stem cells are the novel therapeutic agents in regeneration of induced endometrial fibrosis in experimental rats.

  • Dina Sabry‎ et al.
  • Bioscience reports‎
  • 2017‎

Endometrial fibrosis is the presence of intrauterine adhesions (IUAs) after any uterine surgery or curettage and it results in infertility and recurrent pregnancy loss. We evaluated the role of human mesenchymal stem cells (hMSCs) as a therapeutic agent of endometrial fibrosis. We also compared the effect of MSCs with the effect of estrogen and neupogen either each alone or as a combined therapy with MSCs. This experimental study was performed on 84 albino rats which were divided into seven groups (n=12 rats/group) as follows, group1: normal control rats, group 2: induced fibrosis, group 3: induced fibrosis that received oral estrogen, group 4: induced fibrosis that received hMSCs, group 5: induced fibrosis that received hMSCs and estrogen, group 6: induced fibrosis that received neupogen, and group 7: induced fibrosis that received hMSCs and neupogen. The extent of fibrosis, vascularization, and inflammation were evaluated by; qRT-PCR for interleukin 1 (IL-1), interleukin 6 (IL-6), TNF, vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and RUNX; ELISA for connective tissue growth factor (CTGF); Western blotting for collagen-I; immunohistochemistry examination for VEGF and RUNX-2; and histopathological assessment. In therapeutic groups either by hMSCs alone or combined with estrogen or neupogen; fibrosis and inflammation (IL-1, IL-6, TNF, TGF-β, RUNX, CTGF, and collagen-I) were significantly decreased but vascularization (VEGF) was significantly increased (P<0.05) compared with induced fibrosis group. The most significant result was obtained in fibrosis that received combined therapy of hMSCs and neupogen (P=0.000). Stem cells and neupogen are a highly effective alternative regenerative agents in endometrial fibrosis.


Role of the prostaglandin E2/E-prostanoid 2 receptor signalling pathway in TGFβ-induced mice mesangial cell damage.

  • Na-Na Li‎ et al.
  • Bioscience reports‎
  • 2014‎

The prostaglandin E2 receptor, EP2 (E-prostanoid 2), plays an important role in mice glomerular MCs (mesangial cells) damage induced by TGFβ1 (transforming growth factor-β1); however, the molecular mechanisms for this remain unknown. The present study examined the role of the EP2 signalling pathway in TGFβ1-induced MCs proliferation, ECM (extracellular matrix) accumulation and expression of PGES (prostaglandin E2 synthase). We generated primary mice MCs. Results showed MCs proliferation promoted by TGFβ1 were increased; however, the production of cAMP and PGE2 (prostaglandin E2) was decreased. EP2 deficiency in these MCs augmented FN (fibronectin), Col I (collagen type I), COX2 (cyclooxygenase-2), mPGES-1 (membrane-associated prostaglandin E1), CTGF (connective tissue growth factor) and CyclinD1 expression stimulated by TGFβ1. Silencing of EP2 also strengthened TGFβ1-induced p38MAPK (mitogen-activated protein kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2) and CREB1 (cAMP responsive element-binding protein 1) phosphorylation. In contrast, Adenovirus-mediated EP2 overexpression reversed the effects of EP2-siRNA (small interfering RNA). Collectively, the investigation indicates that EP2 may block p38MAPK, ERK1/2 and CREB1 phosphorylation via activation of cAMP production and stimulation of PGE2 through EP2 receptors which prevent TGFβ1-induced MCs damage. Our findings also suggest that pharmacological targeting of EP2 receptors may provide new inroads to antagonize the damage induced by TGFβ1.


miR-26a-5p mediates TLR signaling pathway by targeting CTGF in LPS-induced alveolar macrophage.

  • Chunyan Li‎ et al.
  • Bioscience reports‎
  • 2020‎

To explore the regulation mechanism of miR-26a-5p and connective tissue growth factor (CTGF) in lipopolysaccharide (LPS)-induced alveolar macrophages, which is a severe pneumonia cell model. MH-S cells were grouped into Normal group, Model group, negative control (NC) group, miR-26a-5p mimic group, oe-CTGF group, miR-26a-5p mimic + oe-CTGF group. The expression level of miR-26a-5p, CTGF and Toll-like receptor (TLR) signaling related molecules (TLR2, TLR4 and nuclear factor-κB p65) were detected by qRT-PCR and WB, respectively. The cell viability and apoptosis rate were detected by methyl thiazolyl tetrazolium (MTT) and flow cytometry, respectively. Compared with the Normal group, the expression level of miR-26a-5p was significantly decreased, while CTGF protein level was significantly increased in the Model group. Compared with the Model group, MH-S cells with miR-26a-5p overexpression showed enhanced cell viability, decreased apoptosis rate, declined expression level of TLR signaling related molecules and reduced level of tumor necrosis factor-α (TNF-α), interleukin (IL) 6 (IL-6) and IL-1β, while those with CTGF overexpression had an opposite phenotype. In conclusion, miR-26a-5p can inhibit the expression of CTGF and mediate TLR signaling pathway to inhibit the cell apoptosis and reduce the expression of proinflammatory cytokines in alveolar macrophages which is a cell model of severe pneumonia.


Endostatin attenuates heart failure via inhibiting reactive oxygen species in myocardial infarction rats.

  • Xuguang Xu‎ et al.
  • Bioscience reports‎
  • 2021‎

The purpose of the present study was to evaluate whether endostatin overexpression could improve cardiac function, hemodynamics, and fibrosis in heart failure (HF) via inhibiting reactive oxygen species (ROS). The HF models were established by inducing ischemia myocardial infarction (MI) through ligation of the left anterior descending (LAD) artery in Sprague-Dawley (SD) rats. Endostatin level in serum was increased in MI rats. The decrease in cardiac function and hemodynamics in MI rats were enhanced by endostatin overexpression. Endostatin overexpression inhibited the increase in collagen I, collagen III, α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), matrix metalloproteinase (MMP)-2 and MMP9 in the hearts of MI rats. MI-induced cardiac hypertrophy was reduced by endostatin overexpression. The increased levels of malondialdehyde (MDA), superoxide anions, the promoted NAD(P)H oxidase (Nox) activity, and the reduced superoxide dismutase (SOD) activity in MI rats were reversed by endostatin overexpression. Nox4 overexpression inhibited the cardiac protective effects of endostatin. These results demonstrated that endostatin improved cardiac dysfunction and hemodynamics, and attenuated cardiac fibrosis and hypertrophy via inhibiting oxidative stress in MI-induced HF rats.


High glucose-induced cytoplasmic translocation of Dnmt3a contributes to CTGF hypo-methylation in mesangial cells.

  • Hao Zhang‎ et al.
  • Bioscience reports‎
  • 2016‎

Connective tissue growth factor (CTGF) plays an essential role in the pathogenesis of diabetic nephropathy and we have previously identified that high glucose induced the expression of CTGF by decreasing DNA methylation. The aim of the present study was to investigate the underlying mechanisms of the high glucose-induced CTGF hypo-methylation. Human glomerular mesangial cells (hMSCs) were treated with low glucose (5 mM), mannitol (30 mM) or high glucose (30 mM) respectively. Immunofluorescence staining, real-time quantitative PCR and western blotting were performed to determine the subcellular distribution and expression of CTGF and Dnmt3a. ChIP-PCR assay was applied to investigate the capability of Dnmt3a to bind the CpG island of CTGF. Our results showed that high glucose induced both mRNA and protein expressions of CTGF, and led to increased cytoplasmic translocation of Dnmt3a in cultured hMSCs. The nuclear Dnmt3a protein was significantly reduced after high glucose treatment, although the expression of total Dnmt3a protein was not altered. We further discovered that ERK/MAPK signalling contributed to the high glucose-induced cytoplasmic translocation of Dnmt3a. Consequently, less Dnmt3a protein was bound to the CpG island of CTGF promoter, which induced an increase in CTGF expression by epigenetic regulation in the presence of high glucose. In conclusion, high glucose induces cytoplasmic translocation of Dnmt3a, possibly through activating ERK/MAPK signalling pathway, which contributes to the decreased binding of Dnmt3a on CTGF promoter and the subsequent CTGF hypo-methylation in diabetic nephropathy.


Sex-based differences in myocardial infarction-induced kidney damage following cigarette smoking exposure: more renal protection in premenopausal female mice.

  • Nada J Habeichi‎ et al.
  • Bioscience reports‎
  • 2020‎

The impact of cigarette smoking (CS) on kidney homeostasis in the presence of myocardial infarction (MI) in both males and females remains poorly elucidated. C57BL6/J mice were exposed to 2 weeks of CS prior to MI induction followed by 1 week of CS exposure in order to investigate the impact of CS on kidney damage in the presence of MI. Cardiac hemodynamic analysis revealed a significant decrease in ejection fraction (EF) in CS-exposed MI male mice when compared with the relative female subjects, whereas cardiac output (CO) comparably decreased in CS-exposed MI mice of both sexes. Kidney structural alterations, including glomerular retraction, proximal convoluted tubule (PCT) cross-sectional area, and total renal fibrosis were more pronounced in CS-exposed MI male mice when compared with the relative female group. Although renal reactive oxygen species (ROS) generation and glomerular DNA fragmentation significantly increased to the same extent in CS-exposed MI mice of both sexes, alpha-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) significantly increased in CS-exposed MI male mice, only. Metabolically, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide riboside-1 (NMRK-1) substantially increased in CS-exposed MI female mice only, whereas sirtuin (SIRT)-1 and SIRT-3 substantially decreased in CS-exposed MI male mice compared with their relative female group. Additionally, renal NAD levels significantly decreased only in CS-exposed MI male mice. In conclusion, MI female mice exhibited pronounced renal protection following CS when compared with the relative male groups.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: