Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Genetic influences on central and peripheral nervous system activity during fear conditioning.

  • G Kastrati‎ et al.
  • Translational psychiatry‎
  • 2022‎

Fear conditioning is an evolutionarily conserved type of learning serving as a model for the acquisition of situationally induced anxiety. Brain function supporting fear conditioning may be genetically influenced, which in part could explain genetic susceptibility for anxiety following stress exposure. Using a classical twin design and functional magnetic resonance imaging, we evaluated genetic influences (h2) on brain activity and standard autonomic measures during fear conditioning. We found an additive genetic influence on mean brain activation (h2 = 0.34) and autonomic responses (h2 = 0.24) during fear learning. The experiment also allowed estimation of the genetic influence on brain activation during safety learning (h2 = 0.55). The mean safety, but not fear, related brain activation was genetically correlated with autonomic responses. We conclude that fear and safety learning processes, both involved in anxiety development, are moderately genetically influenced as expressed both in the brain and the body.


Evolutionary conserved role of neural cell adhesion molecule-1 in memory.

  • Vanja Vukojevic‎ et al.
  • Translational psychiatry‎
  • 2020‎

The neural cell adhesion molecule 1 (NCAM-1) has been implicated in several brain-related biological processes, including neuronal migration, axonal branching, fasciculation, and synaptogenesis, with a pivotal role in synaptic plasticity. Here, we investigated the evolutionary conserved role of NCAM-1 in learning and memory. First, we investigated sustained changes in ncam-1 expression following aversive olfactory conditioning in C. elegans using molecular genetic methods. Furthermore, we examined the link between epigenetic signatures of the NCAM1 gene and memory in two human samples of healthy individuals (N = 568 and N = 319) and in two samples of traumatized individuals (N = 350 and N = 463). We found that olfactory conditioning in C. elegans induced ncam-1 expression and that loss of ncam-1 function selectively impaired associative long-term memory, without causing acquisition, sensory, or short-term memory deficits. Reintroduction of the C. elegans or human NCAM1 fully rescued memory impairment, suggesting a conserved role of NCAM1 for memory. In parallel, DNA methylation of the NCAM1 promoter in two independent healthy Swiss cohorts was associated with memory performance. In two independent Sub-Saharan populations of conflict zone survivors who had faced severe trauma, DNA methylation at an alternative promoter of the NCAM1 gene was associated with traumatic memories. Our results support a role of NCAM1 in associative memory in nematodes and humans, and might, ultimately, be helpful in elucidating diagnostic markers or suggest novel therapy targets for memory-related disorders, like PTSD.


Enhanced discriminative aversive learning and amygdala responsivity in 5-HT transporter mutant mice.

  • João Lima‎ et al.
  • Translational psychiatry‎
  • 2019‎

Genetic variation in the human serotonin transporter (5-HTT) has been linked to altered fear learning but the data are inconsistent and the mechanism is unclear. The present study investigated conditioned aversive learning in 5-HTT knockout (KO) mice while simultaneously recording neural network activity (theta oscillations) and hemodynamic responses (tissue oxygen delivery) from the amygdala, a brain region necessary for forming fearful memories. Conditioned aversive learning was measured using a discrimination learning task in which one auditory cue was paired with foot-shock, whereas a second auditory cue was not. Compared with wild-type mice, 5-HTTKO mice exhibited faster discrimination learning. This effect was associated with stronger theta frequency oscillations and greater hemodynamic changes in the amygdala in response to both the emotionally relevant cues and the unconditioned foot-shock stimulus. Furthermore, hemodynamic responses to the unconditioned stimulus predicted behavioral discrimination performance the following day. Acute pharmacological 5-HTT blockade in wild-type mice produced a similar effect, to the extent that administration of citalopram during the fear conditioning sessions enhanced fear memory recall. Collectively, our data argue that loss of 5-HTT function enhances amygdala responsivity to aversive events and facilitates learning for emotionally relevant cues.


Behavioral phenotyping of a rat model of the BDNF Val66Met polymorphism reveals selective impairment of fear memory.

  • Emily J Jaehne‎ et al.
  • Translational psychiatry‎
  • 2022‎

The common brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with reduced activity-dependent BDNF release and increased risk for anxiety disorders and PTSD. Here we behaviorally phenotyped a novel Val66Met rat model with an equivalent valine to methionine substitution in the rat Bdnf gene (Val68Met). In a three-day fear conditioning protocol of fear learning and extinction, adult rats with the Met/Met genotype demonstrated impaired fear memory compared to Val/Met rats and Val/Val controls, with no genotype differences in fear learning or extinction. This deficit in fear memory occurred irrespective of the sex of the animals and was not seen in adolescence (4 weeks of age). There were no changes in open-field locomotor activity or anxiety measured in the elevated plus maze (EPM) nor in other types of memory measured using the novel-object recognition test or Y-maze. BDNF exon VI expression in the dorsal hippocampus was higher and BDNF protein level in the ventral hippocampus was lower in female Val/Met rats than female Val/Val rats, with no other genotype differences, including in total BDNF, BDNF long, or BDNF IV mRNA. These data suggest a specific role for the BDNF Met/Met genotype in fear memory in rats. Further studies are required to investigate gene-environment interactions in this novel animal model.


No effect of glucose administration in a novel contextual fear generalization protocol in rats.

  • L Luyten‎ et al.
  • Translational psychiatry‎
  • 2016‎

The excessive transfer of fear acquired for one particular context to similar situations has been implicated in the development and maintenance of anxiety disorders, such as post-traumatic stress disorder. Recent evidence suggests that glucose ingestion improves the retention of context conditioning. It has been speculated that glucose might exert that effect by ameliorating hippocampal functioning, and may hold promise as a therapeutic add-on in traumatized patients because improved retention of contextual fear could help to restrict its generalization. However, direct data regarding the effect of glucose on contextual generalization are lacking. Here, we introduce a new behavioral protocol to study such contextual fear generalization in rats. In adult Wistar rats, our procedure yields a gradient of generalization, with progressively less freezing when going from the original training context, over a perceptually similar generalization context, to a markedly dissimilar context. Moreover, we find a flattening of the gradient when the training-test interval is prolonged with 1 week. We next examine the effect of systemic glucose administration on contextual generalization with this novel procedure. Our data do not sustain generalization-reducing effects of glucose and question its applicability in traumatic situations. In summary, we have developed a replicable contextual generalization procedure for rats and demonstrate how it is a valuable tool to examine the neurobiological correlates and test pharmacological interventions pertaining to an important mechanism in the etiology of pathological anxiety.


Modulation of defensive reactivity by GLRB allelic variation: converging evidence from an intermediate phenotype approach.

  • U Lueken‎ et al.
  • Translational psychiatry‎
  • 2017‎

Representing a phylogenetically old and very basic mechanism of inhibitory neurotransmission, glycine receptors have been implicated in the modulation of behavioral components underlying defensive responding toward threat. As one of the first findings being confirmed by genome-wide association studies for the phenotype of panic disorder and agoraphobia, allelic variation in a gene coding for the glycine receptor beta subunit (GLRB) has recently been associated with increased neural fear network activation and enhanced acoustic startle reflexes. On the basis of two independent healthy control samples, we here aimed to further explore the functional significance of the GLRB genotype (rs7688285) by employing an intermediate phenotype approach. We focused on the phenotype of defensive system reactivity across the levels of brain function, structure, and physiology. Converging evidence across both samples was found for increased neurofunctional activation in the (anterior) insular cortex in GLRB risk allele carriers and altered fear conditioning as a function of genotype. The robustness of GLRB effects is demonstrated by consistent findings across different experimental fear conditioning paradigms and recording sites. Altogether, findings provide translational evidence for glycine neurotransmission as a modulator of the brain's evolutionary old dynamic defensive system and provide further support for a strong, biologically plausible candidate intermediate phenotype of defensive reactivity. As such, glycine-dependent neurotransmission may open up new avenues for mechanistic research on the etiopathogenesis of fear and anxiety disorders.


Interaction between maternal immune activation and peripubertal stress in rats: impact on cocaine addiction-like behaviour, morphofunctional brain parameters and striatal transcriptome.

  • Roberto Capellán‎ et al.
  • Translational psychiatry‎
  • 2023‎

Substance use disorders are more prevalent in schizophrenia, but the causal links between both conditions remain unclear. Maternal immune activation (MIA) is associated with schizophrenia which may be triggered by stressful experiences during adolescence. Therefore, we used a double-hit rat model, combining MIA and peripubertal stress (PUS), to study cocaine addiction and the underlying neurobehavioural alterations. We injected lipopolysaccharide or saline on gestational days 15 and 16 to Sprague-Dawley dams. Their male offspring underwent five episodes of unpredictable stress every other day from postnatal day 28 to 38. When animals reached adulthood, we studied cocaine addiction-like behaviour, impulsivity, Pavlovian and instrumental conditioning, and several aspects of brain structure and function by MRI, PET and RNAseq. MIA facilitated the acquisition of cocaine self-administration and increased the motivation for the drug; however, PUS reduced cocaine intake, an effect that was reversed in MIA + PUS rats. We found concomitant brain alterations: MIA + PUS altered the structure and function of the dorsal striatum, increasing its volume and interfering with glutamatergic dynamics (PUS decreased the levels of NAA + NAAG but only in LPS animals) and modulated specific genes that could account for the restoration of cocaine intake such as the pentraxin family. On its own, PUS reduced hippocampal volume and hyperactivated the dorsal subiculum, also having a profound effect on the dorsal striatal transcriptome. However, these effects were obliterated when PUS occurred in animals with MIA experience. Our results describe an unprecedented interplay between MIA and stress on neurodevelopment and the susceptibility to cocaine addiction.


Individual differences in human fear generalization-pattern identification and implications for anxiety disorders.

  • Y Stegmann‎ et al.
  • Translational psychiatry‎
  • 2019‎

Previous research indicates that anxiety disorders are characterized by an overgeneralization of conditioned fear as compared with healthy participants. Therefore, fear generalization is considered a key mechanism for the development of anxiety disorders. However, systematic investigations on the variance in fear generalization are lacking. Therefore, the current study aims at identifying distinctive phenotypes of fear generalization among healthy participants. To this end, 1175 participants completed a differential fear conditioning phase followed by a generalization test. To identify patterns of fear generalization, we used a k-means clustering algorithm based on individual arousal generalization gradients. Subsequently, we examined the reliability and validity of the clusters and phenotypical differences between subgroups on the basis of psychometric data and markers of fear expression. Cluster analysis reliably revealed five clusters that systematically differed in mean responses, differentiation between conditioned threat and safety, and linearity of the generalization gradients, though mean response levels accounted for most variance. Remarkably, the patterns of mean responses were already evident during fear acquisition and corresponded most closely to psychometric measures of anxiety traits. The identified clusters reliably described subgroups of healthy individuals with distinct response characteristics in a fear generalization test. Following a dimensional view of psychopathology, these clusters likely delineate risk factors for anxiety disorders. As crucial group characteristics were already evident during fear acquisition, our results emphasize the importance of average fear responses and differentiation between conditioned threat and safety as risk factors for anxiety disorders.


Opposing roles for amygdala and vmPFC in the return of appetitive conditioned responses in humans.

  • Claudia Ebrahimi‎ et al.
  • Translational psychiatry‎
  • 2019‎

Learning accounts of addiction and obesity emphasize the persistent power of Pavlovian reward cues to trigger craving and increase relapse risk. While extinction can reduce conditioned responding, Pavlovian relapse phenomena-the return of conditioned responding following successful extinction-challenge the long-term success of extinction-based treatments. Translational laboratory models of Pavlovian relapse could therefore represent a valuable tool to investigate the mechanisms mediating relapse, although so far human research has mostly focused on return of fear phenomena. To this end we developed an appetitive conditioning paradigm with liquid food rewards in combination with a 3-day design to investigate the return of appetitive Pavlovian responses and the involved neural structures in healthy subjects. Pavlovian conditioning (day 1) was assessed in 62 participants, and a subsample (n = 33) further completed extinction (day 2) and a reinstatement test (day 3). Conditioned responding was assessed on explicit (pleasantness ratings) and implicit measures (reaction time, skin conductance, heart rate, startle response) and reinstatement effects were further evaluated using fMRI. We observed a return of conditioned responding during the reinstatement test, evident by enhanced skin conductance responses, accompanied by enhanced BOLD responses in the amygdala. On an individual level, psychophysiological reinstatement intensity was significantly anticorrelated with ventromedial prefrontal cortex (vmPFC) activation, and marginally anticorrelated with enhanced amygdala-vmPFC connectivity during late reinstatement. Our results extend evidence from return of fear phenomena to the appetitive domain, and highlight the role of the vmPFC and its functional connection with the amygdala in regulating appetitive Pavlovian relapse.


Brain plasticity and cognitive functions after ethanol consumption in C57BL/6J mice.

  • E Stragier‎ et al.
  • Translational psychiatry‎
  • 2015‎

Acute or chronic administrations of high doses of ethanol in mice are known to produce severe cognitive deficits linked to hippocampal damage. However, we recently reported that chronic and moderate ethanol intake in C57BL/6J mice induced chromatin remodeling within the Bdnf promoters, leading to both enhanced brain-derived neurotrophic factor (BDNF) expression and hippocampal neurogenesis under free-choice protocol. We performed here a series of cellular and behavioral studies to analyze the consequences of these modifications. We showed that a 3-week chronic free-choice ethanol consumption in C57BL/6J mice led to a decrease in DNA methylation of the Bdnf gene within the CA1 and CA3 subfields of the hippocampus, and upregulated hippocampal BDNF signaling pathways mediated by ERK, AKT and CREB. However, this activation did not affect long-term potentiation in the CA1. Conversely, ethanol intake impaired learning and memory capacities analyzed in the contextual fear conditioning test and the novel object recognition task. In addition, ethanol increased behavioral perseveration in the Barnes maze test but did not alter the mouse overall spatial capacities. These data suggested that in conditions of chronic and moderate ethanol intake, the chromatin remodeling leading to BDNF signaling upregulation is probably an adaptive process, engaged via epigenetic regulations, to counteract the cognitive deficits induced by ethanol.


Fasting enhances extinction retention and prevents the return of fear in humans.

  • Le Shi‎ et al.
  • Translational psychiatry‎
  • 2018‎

Fear is prone to return following extinction that is the basis of exposure therapy for fear-related disorders. Manipulations that enhance the extinction process can be beneficial for treatment. Animal studies have shown that fasting or caloric restriction can enhance extinction and inhibit the return of fear. The present study examined the effects of fasting on fear acquisition, extinction, and the return of fear in humans. One hundred and twenty-five male participants were randomized into a fasting group and food group and exposed to a Pavlovian fear conditioning paradigm. Changes in plasma cortisol and ghrelin levels were examined using enzyme-linked immunosorbent assays. One-night fasting had no effect on fear acquisition but enhanced fear extinction retention and prevented the return of fear, and this effect persisted for at least 6 months. This procedure was also effective for remote fear memory. Plasma ghrelin levels were elevated after fasting and had a negative relationship with the fear response in spontaneous recovery test. However, overnight fasting did not affect cortisol levels. These findings indicate that fasting enhances extinction retention and prevents the return of fear, without influencing fear memory formation. We propose that this novel procedure may open new avenues for promoting extinction-based therapies for fear-related disorders.


A medial prefrontal cortex-nucleus acumens corticotropin-releasing factor circuitry for neuropathic pain-increased susceptibility to opioid reward.

  • Yuanzhong Kai‎ et al.
  • Translational psychiatry‎
  • 2018‎

Recent studies have shown that persistent pain facilitates the response to morphine reward. However, the circuit mechanism underlying this process remains ambiguous. In this study, using chronic constriction injury (CCI) of the sciatic nerve in mice, we found that persistent neuropathic pain reduced the minimum number of morphine conditioning sessions required to induce conditioned place preference (CPP) behavior. This dose of morphine had no effect on the pain threshold. In the medial prefrontal cortex (mPFC), which is involved in both pain and emotion processing, corticotropin-releasing factor (CRF) expressing neuronal activity was increased in CCI mice. Chemogenetic inhibition of mPFC CRF neurons reversed CCI-induced morphine CPP facilitation. Furthermore, the nucleus acumens (NAc) received mPFC CRF functional projections that exerted excitatory effects on NAc neurons. Optogenetic inhibition of mPCF neuronal terminals or local infusion of the CRF receptor 1 (CRFR1) antagonist in the NAc restored the effects of neuropathic pain on morphine-induced CPP behavior, but not in normal mice. On a molecular level, in CCI mice, CRFR1 protein expression was increased in the NAc by a histone dimethyltransferase G9a-mediated epigenetic mechanism. Local G9a knockdown increased the expression of CRFR1 and mimicked CCI-induced hypersensitivity to acquiring morphine CPP. Taken together, these findings demonstrate a previously unknown and specific mPFC CRF engagement of NAc neuronal circuits, the sensitization of which facilitates behavioral responses to morphine reward in neuropathic pain states via CRFR1s.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: