2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

IVIG immunotherapy protects against synaptic dysfunction in Alzheimer's disease through complement anaphylatoxin C5a-mediated AMPA-CREB-C/EBP signaling pathway.

  • Bing Gong‎ et al.
  • Molecular immunology‎
  • 2013‎

Complement component C5-derived C5a locally generated in the brain has been shown to protect against glutamate-induced neuronal apoptosis and beta-amyloid (Aβ) toxicity, but the mechanism is not clear. In this study, we tested the hypothesis that C5a influences upstream signal transduction pathways associated with cAMP-response element-binding protein (CREB) activation, in which alterations of CREB levels are associated with cognitive deterioration in AD.


Disruption of the C5a receptor gene increases resistance to acute Gram-negative bacteremia and endotoxic shock: opposing roles of C3a and C5a.

  • Travis J Hollmann‎ et al.
  • Molecular immunology‎
  • 2008‎

The host response to intravascular, Gram-negative bacteria includes profound immunologic, hematologic and physiologic changes. Numerous host defense mechanisms are activated by Gram-negative bacteria, including the complement system. Activation of the complement system leads to cleavage of C5 with subsequent generation of the C5a anaphylatoxin peptide. C5a mediates potent, proinflammatory activities by binding to the C5a receptor (C5aR, CD88). In this study, we report the targeted disruption of the murine C5aR gene (C5aR-/- mice) and define the role of the C5aR in a model of Gram-negative bacteremia. Following an intravenous infusion of heat-killed Escherichia coli, the C5aR-/- mice were completely protected from the mortality suffered by their wild-type littermates (P<0.001). The C5aR-/- mice were also significantly (P=0.008) more resistant to mortality following an intravenous infusion of purified E. coli endotoxin compared to the wild-type littermates. In addition, the C5aR-/- mice were resistant to the thrombocytopenia and hemoconcentration observed in wild-type animals. Lethality in the wild-type mice was reversed by pre-treatment with either the histamine antagonist diphenhydramine or triprolidine. The wild-type littermates were also rescued following pre-treatment with the basophil and mast cell-stabilizing agent - cromolyn sodium. Collectively, these data demonstrate that not only is the absence of the C5aR protective in E. coli bacteremia, but that C5aR-dependent histamine release plays a major role in shock induced by Gram-negative septicemia. Moreover, they provide additional in vivo evidence that C3a and C5a have divergent biological functions in Gram-negative bacteremia and shock.


CNS-specific expression of C3a and C5a exacerbate demyelination severity in the cuprizone model.

  • Sarah A Ingersoll‎ et al.
  • Molecular immunology‎
  • 2010‎

Demyelination in the central nervous system (CNS) is known to involve several immune effector mechanisms, including complement proteins. Local production of complement by glial cells in the brain can be both harmful and protective. To investigate the roles of C3a and C5a in demyelination and remyelination pathology we utilized the cuprizone model. Transgenic mice expressing C3a or C5a under the control of the glial fibrillary acidic protein (GFAP) promoter had exacerbated demyelination and slightly delayed remyelination in the corpus callosum compared to WT mice. C3a and C5a transgenic mice had increased cellularity in the corpus callosum due to increase activation and/or migration of microglia. Oligodendrocytes migrated to the corpus callosum in higher numbers during early remyelination events in C3a and C5a transgenic mice, thus enabling these mice to remyelinate as effectively as WT mice by the end of the 10 week study. To determine the effects of C3a and/or C5a on individual glial subsets, we created murine recombinant C3a and C5a proteins. When microglia and mixed glial cultures were stimulated with C3a and/or C5a, we observed an increase in the production of proinflammatory cytokines and chemokines. In contrast, astrocytes had decreased cytokine and chemokine production in the presence of C3a and/or C5a. We also found that the MAPK pathway proteins JNK and ERK1/2 were activated in glia upon stimulation with C3a and C5a. Overall, our findings show that although C3a and C5a production in the brain play a negative role during demyelination, these proteins may aid in remyelination.


Roles of promoter and 3' untranslated motifs in expression of the human C5a receptor.

  • Elizabeth Palmer‎ et al.
  • Molecular immunology‎
  • 2012‎

The C5a receptor (C5aR) is a 7 transmembrane G-protein coupled receptor (GPCR) that mediates the powerful pro-inflammatory effect of the complement activation product C5a. Excess C5a generated under pathological conditions has been implicated in a variety of conditions including sepsis, asthma and rheumatoid arthritis, but very little is known about the regulation of expression of the C5aR. The 5' promoter region and 3' untranslated region (UTR) of the C5aR mRNA were cloned, generating enhanced green fluorescent protein (EGFP)-reporter plasmids, which were transfected into the monocytic cell line U937. Most of the cloned 2kb 5' region was dispensable for the expression of the reporter constructs and the majority of regulatory sequences are in the first 200 bp. Three motifs, a NFκB, a CCAAT and a NFAT site, were identified to be of importance by site directed mutagenesis for basal expression. Analysis of the 3'UTR of the C5aR mRNA showed that it contained two AU-rich elements (AREs), however site directed mutagenesis showed that these had no effect on basal expression. While the phorbol ester PMA and dibutyryl cAMP increased C5aR protein expression, these agents had no effect on the regulation of expression via the promoter or the 3'UTR. This is the first study to investigate the role of both the promoter and 3'UTR in regulating C5aR expression and our results show that regulation of the human C5aR is similar but not identical to that of the mouse C5aR.


Complement activation on neutrophils initiates endothelial adhesion and extravasation.

  • Antonina Akk‎ et al.
  • Molecular immunology‎
  • 2019‎

Neutrophils are essential to the pathogenesis of many inflammatory diseases. In the autoantibody-mediated K/BxN model of inflammatory arthritis, the alternative pathway (AP) of complement and Fc gamma receptors (FcγRs) are required for disease development while the classical pathway is dispensable. The reason for this differential requirement is unknown. We show that within minutes of K/BxN serum injection complement activation (CA) is detected on circulating neutrophils, as evidenced by cell surface C3 fragment deposition. CA requires the AP factor B and FcγRs but not C4, implying that engagement of FcγRs by autoantibody or immune complexes directly triggers AP C3 convertase assembly. The absence of C5 does not prevent CA on neutrophils but diminishes the upregulation of adhesion molecules. In vivo two-photon microscopy reveals that CA on neutrophils is critical for neutrophil extravasation and generation of C5a at the site of inflammation. C5a stimulates the release of neutrophil proteases, which contribute to the degradation of VE-cadherin, an adherens junction protein that regulates endothelial barrier integrity. C5a receptor antagonism blocks the extracellular release of neutrophil proteases, suppressing VE-cadherin degradation and neutrophil transendothelial migration in vivo. These results elucidate the AP-dependent intravascular neutrophil-endothelial interactions that initiate the inflammatory cascade in this disease model but may be generalizable to neutrophil extravasation in other inflammatory processes.


The human complement fragment receptor, C5L2, is a recycling decoy receptor.

  • Anne-Marie Scola‎ et al.
  • Molecular immunology‎
  • 2009‎

C5L2 is a 7 transmembrane domain receptor for complement fragment C5a that, unlike the classical C5a receptor, C5aR, does not couple to G proteins. However, in mice where C5L2 has been deleted, the response to C5a is altered, suggesting that C5L2 may have a signaling function. In order to investigate whether human C5L2 also has some capacity to transduce signals, we have attempted to produce a signaling competent form of human C5L2 by inserting C5aR sequences at three key G protein activation motifs. However, we detected neither an intracellular Ca(2+) response nor beta-arrestin redistribution in mutated C5L2, suggesting that the potential for G protein coupling is completely absent in this receptor and that, in humans, C5L2 may have functions that are unrelated to signaling. In confirmation of this, we detected constitutive ligand-independent internalization of C5L2 that resulted in the rapid accumulation of C5a and its stable metabolite, C5a des Arg, within the cell with only a small net change in cell surface receptor levels. Internalization was found to be through a clathrin-dependent mechanism that led to the retention and, in cells natively expressing C5L2, the degradation of the ligand within an intracellular compartment. In contrast, the classical C5a receptor, C5aR, internalized ligand much more slowly and a majority of this ligand was released back into the extracellular environment in an apparently undegraded form. These data suggest that a major function of human C5L2 is to remove active complement fragments from the extracellular environment.


Expression of complement components, receptors and regulators by human dendritic cells.

  • Ke Li‎ et al.
  • Molecular immunology‎
  • 2011‎

Integration of innate and adaptive arms of the immune response at a cellular and molecular level appears to be fundamental to the development of powerful effector functions in host defence and aberrant immune responses. Here we provide evidence that the functions of human complement activation and antigen presentation converge on dendritic cells (DCs). We show that several subsets of human DCs [i.e., monocyte derived (CD1a(+)CD14(-)), dermal (CD1a(+)DC-SIGN(+)), Langerhans (CD1a(+)Langerin(+)), myeloid (CD1c(+)CD19(-)), plamacytoid (CD45RA(+)CD123(+))] express many of the components of the classical and alternative and terminal pathways of complement. Moreover human DCs have receptors known to detect the biologically active peptides C3a and C5a (C3aR, C5aR) and the covalently bound fragments C3b and metabolites iC3b and C3d which serve in immune adhesion (i.e., CR3, CR4, CRIg). We also show that the human DC surface is characterised by membrane bound regulators of complement activation, which are also known to participate in intracellular signalling (i.e., CD46, CD55, CD59). This work provides an extensive description of complement components relevant to the integrated actions of complement and DC, illuminated by animal studies. It acts as a resource that allows further understanding and exploitation of role of complement in human health and immune mediated diseases.


Complement C3a receptor modulates embryonic neural progenitor cell proliferation and cognitive performance.

  • Liam G Coulthard‎ et al.
  • Molecular immunology‎
  • 2018‎

The complement system of innate immunity is emerging as a novel player in neurodevelopmental processes. The receptor for C3a, C3aR, shares a close evolutionary and functional relationship with C5a receptors. Whilst the C5a receptor, C5aR1, has been demonstrated to promote embryonic neural stem cell proliferation, little is known about the role of C3aR in this process. Here we show that C3aR is expressed in a similar manner to C5aR1 in mice, at the apical pole of the embryonic ventricular zone, though it has an opposing function. Using in utero delivery of C3aR agonist and antagonist compounds to the embryonic ventricle, we demonstrate that C3aR functions to decrease proliferation of apical neural progenitor cells (NPC). Intriguingly, C3aR-/- animals also have altered NPC proliferation, but demonstrate an opposing phenotype to animals subjected to pharmacological blockade of C3aR. Finally, despite a grossly normal development of C3aR-/- animals, cognitive behavioural testing of adult mice showed subtle deficits in recall memory. These data demonstrate that in addition to C5a, C3a also has a critical role in the normal development of the mammalian brain.


Expression of complement regulators and receptors on human NT2-N neurons--effect of hypoxia and reoxygenation.

  • Elena D Pedersen‎ et al.
  • Molecular immunology‎
  • 2007‎

Complement activation can cause tissue damage in cerebral stroke by the release of biologically potent activation products and impaired function of regulatory proteins. We investigated the constitutive and hypoxia-reoxygenation-dependent expression of complement receptor 1 (CD35), membrane cofactor protein (CD46), decay-accelerating factor (CD55), protectin (CD59), and complement C3a and C5a receptors (C3aR and C5aR) on human NT2-N neurons. The effect of hypoxia-reoxygenation on C3d-deposition on neurons and endothelial cells was also investigated. NT2-N neurons were examined by cellular enzyme-linked immunosorbent assay and immunofluorescence microscopy. Endothelial cells were examined by flow cytometry. Three hours 1% or 0.1% hypoxia and 21h reoxygenation with 50% AB-serum were used to investigate the effect of hypoxia-reoxygenation on regulators and C3d-deposition. NT2-N neurons expressed significant amounts of CD59 (Clone H19/Clone BRIC229: p=0.000006/p=0.000003), CD46 (p=0.00006), CD55 (p=0.003) and C3aR (p=0.00003). CD35 and C5aR were not significantly expressed. There were no effects of hypoxia-reoxygenation on any of the regulators or receptors after 1% hypoxia and reoxygenation. However, CD55 (p=0.02) was down-regulated after 0.1% hypoxia and subsequent reoxygenation with AB-serum. There were no difference observed in the C3d-deposition during hypoxia-reoxygenation in either neurons or endothelial cells. In conclusion, human NT2-N neurons constitutively express C3aR, CD46, CD55 and, in particular, CD59. The cells may respond to locally produced C3a and, at the same time, be well protected against complement attack. Although severe hypoxia-reoxygenation may down-regulate CD55 expression, it does not seem to influence C3d-deposition.


Human astrovirus coat protein binds C1q and MBL and inhibits the classical and lectin pathways of complement activation.

  • Pamela S Hair‎ et al.
  • Molecular immunology‎
  • 2010‎

Human astroviruses (HAstVs) constitute a family of non-enveloped, RNA viruses which cause infantile gastroenteritis. We have previously demonstrated that purified HAstV coat protein (CP), multiple copies of which compose the viral capsid, bind C1q resulting in inhibition of classical complement pathway activity. The objective of this study was to further analyze the mechanism by which CP inhibits C1 activation. CP inhibited C1 activation, preventing cleavage of C1s to its active form in the presence of heat-aggregated IgG, a potent classical pathway activator. CP also inhibited generation of the potent anaphylatoxin C5a. CP dose-dependently bound to C1q, the isolated globular heads and the collagen-like regions of the C1q molecule. When CP was added to C1, C1s dissociated from C1q suggesting that CP functionally displaces the protease tetramer (C1s-C1r-C1r-C1s). Given the structural and functional relatedness of C1q and MBL, we subsequently investigated the interactions between CP and MBL. CP bound to purified MBL and was able to inhibit mannan-mediated activation of the lectin pathway. Interestingly, CP did not bind to a variant of MBL that replaces a lysine residue (Lys55) critical for binding to MASP-2, a functional homolog of C1s. Finally, CP was shown to cross the species barrier to inhibit C3 activation and MAC formation in rat serum. These findings suggest CP inhibits C1 and MBL activation via a novel mechanism of interference with the normal interaction of the recognition molecule with its cognate serine proteases.


Neisseria meningitidis and Escherichia coli are protected from leukocyte phagocytosis by binding to erythrocyte complement receptor 1 in human blood.

  • Ole-Lars Brekke‎ et al.
  • Molecular immunology‎
  • 2011‎

The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 N. meningitidis and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant were incubated with whole blood using lepirudin as anticoagulant which has no adverse effects on complement. Bacteria free in plasma, bound to erythrocytes or phagocytized by granulocytes and monocytes were quantified using flow cytometry. The effects of the C3 inhibitor compstatin, a C5a receptor antagonist (C5aRa) and a complement receptor 1 (CR1)-blocking antibody (3D9) were examined. Most bacteria (80%) immediately bound to erythrocytes. The binding gradually declined over time, with a parallel increase in phagocytosis. Complement inhibition with compstatin reduced erythrocyte binding and bacterial C3 opsonization. In contrast, the C5aRa efficiently reduced phagocytosis, but did not affect the binding of bacteria to erythrocytes. The anti-CR1 blocking mAb dose-dependently reduced bacterial binding to erythrocytes to nil, with subsequent increased phagocytosis and oxidative burst. LPS had no effect on these processes since similar results were obtained using an LPS-deficient N. meningitidis mutant. In vivo experiments in a pig model of sepsis showed limited binding of bacteria to erythrocytes, consistent with the facts that erythrocyte CR1 receptors are absent in non-primates and that the bacteria were mainly found in the lungs. In conclusion, complement-dependent binding of Gram-negative bacteria to erythrocyte CR1 decreases phagocytosis and oxidative burst by leukocytes in human whole blood.


Human F(ab')2-containing immune complexes together with anti-hinge natural antibodies stimulate complement amplification in vitro and in vivo.

  • Sandra Fumia‎ et al.
  • Molecular immunology‎
  • 2008‎

The systemic inflammatory response syndrome (SIRS) is triggered by C5a generation following an excessive complement amplification, but it has remained unclear how complement amplification is stimulated. It is known that neutrophilic elastase can cleave IgG to F(ab')(2) and that F(ab')(2)-containing immune complexes (F(ab')(2)-IC) stimulate complement amplification together with an unidentified plasma factor. We show that absorption of plasma on F(ab')(2) from human IgG removed this factor and prevented F(ab')(2)-IC from stimulating complement amplification. The required factor was purified from pooled whole human IgG (IVIG) as those naturally occurring antibodies (NAbs) that bind to F(ab')(2), but not to intact IgG. These "anti-hinge NAbs" restored complement amplification by F(ab')(2)-IC in absorbed plasma. Anti-hinge NAbs must have formed secondary, rigidified IC from F(ab')(2)-IC, because the F(ab')(2) fragments evidently captured dimeric C3b, known as a potent C3 convertase precursor. This process may also stimulate complement amplification in vivo, because plasma from septic patients at the onset of SIRS indeed contained F(ab')(2) fragments. The concentrations of F(ab')(2) and that of factor Bb, an unbiased measure of complement amplification, correlated linearly with that of released elastase. Moreover, the F(ab')(2) fragments migrated on gelfiltration columns together with anti-hinge NAbs as ICs with MW of up to approximately 750kDa, as verified on plasma of each of the nine patients studied. These findings provide for the first time a plausible mechanism of how F(ab')(2)-containing immune complexes stimulate complement amplification together with anti-hinge NAbs. The same mechanism may contribute to complement overreaction at the onset of SIRS.


Role of IgM and angiotensin II Type I receptor autoantibodies in local complement activation in placental ischemia-induced hypertension in the rat.

  • Jean F Regal‎ et al.
  • Molecular immunology‎
  • 2016‎

Preeclampsia is characterized by development of hypertension during pregnancy and reduced placental perfusion. Previous studies in a rat model of placental ischemia-induced hypertension demonstrated that inhibiting complement activation attenuated increased maternal blood pressure with C3a and C5a identified as the important products of complement activation. Given that in other forms of ischemia both natural IgM and antigen antibody complexes initiate complement activation, we hypothesized that placental ischemia exposes neoepitopes recognized by IgM to cause local complement activation and hypertension. Alternatively, we postulated that autoantibody to angiotensin II Type 1 receptor (AT1-AA) interacts with AT1 receptors to cause complement activation. Since complement activation occurs in kidney and placenta in preeclampsia, we used immunohistochemistry to determine IgM deposition and local complement activation in each organ (C3 deposition), and quantitative real-time polymerase chain reaction (qRT-PCR) to quantitate mRNA for endogenous regulators of complement activation CD55, CD59 and Complement receptor 1-related gene/protein y (Crry). On gestation day (GD)14.5, timed pregnant Sprague Dawley rats underwent Sham surgery or placement of clips on inferior abdominal aorta and ovarian arteries to create placental ischemia using the reduced utero-placental perfusion pressure (RUPP) model. As previously reported, RUPP surgery increased mean arterial pressure and circulating C3a on GD19.5. In placenta, IgM and C3 deposition increased, whereas mRNA for complement regulators Crry and CD59 decreased along with Crry protein in RUPP compared to Sham treated animals. In kidney, IgM deposition increased in animals subjected to RUPP vs Sham surgery without a significant change in C3 deposition and coincident with an increase in mRNA for CD55 and CD59. The AT1 receptor antagonist losartan prevents placental ischemia-induced hypertension as well as AT1-AA interaction with AT1 receptors. However, losartan did not attenuate complement activation as measured by circulating C3a or placental C3 deposition. Importantly, our studies indicate that following placental ischemia, complement activation is not due to AT1-AA but is associated with IgM deposition. These studies suggest a role for natural antibodies interacting with placental ischemia-induced neoepitopes to activate complement and contribute to hypertension.


Enhanced recognition of plasma proteins in a non-native state by complement C3b. A possible clearance mechanism for damaged proteins in blood.

  • Mahalakshmi Ramadass‎ et al.
  • Molecular immunology‎
  • 2015‎

Complement C3 is a key fluid-phase protein of the immune system that covalently tags pathogenic cells and molecules for subsequent clearance. Previously, we reported that complement activation results in the formation of multiple C3b:plasma protein complexes in serum. However, it is not known if C3b attaches to any plasma protein in close proximity or preferentially binds damaged proteins. The objective of this study was to determine if C3b couples to plasma proteins in a non-native state and if this could be a potential mechanism to detect and clear damaged proteins from the blood. Using a purified in vitro system with alternative pathway proteins C3, factors B and D it was observed that guanidinium-HCl denaturation of three purified plasma proteins (albumin, alpha-1 proteinase inhibitor, vitamin D binding protein) greatly increased their capacity to form covalent complexes with C3b. However, native vitamin D binding protein, covalently attached to C3b, still retained the ability to bind its natural ligand G-actin, indicating that C3b links to plasma proteins in their native configuration but denaturation substantially increases this interaction. Serum complement activation generated a large number of C3b:plasma protein complexes that bound red blood cell membranes, suggesting a CR1-mediated clearance mechanism. Thermally denatured (60°C) serum activated the alternative pathway when added to fresh serum as evidenced by factor B cleavage and iC3b generation, but this heat-treated serum could not generate the pro-inflammatory peptide C5a. These results show that C3 recognizes and tags damaged plasma proteins for subsequent removal from the blood without triggering proinflammatory functions.


Anti-factor B autoantibody in dense deposit disease.

  • Stefanie Strobel‎ et al.
  • Molecular immunology‎
  • 2010‎

Dense deposit disease (DDD), also known as membranoproliferative glomerulonephritis type II, is a rare kidney disorder that is associated with dysregulation of the alternative pathway of complement. Autoantibodies against the C3bBb convertase termed C3 nephritic factor are common in DDD patients. Here we report an autoantibody that binds to complement factor B in a DDD patient who was negative for C3 nephritic factor. This anti-factor B autoantibody recognized an epitope within the Bb fragment and was able to bind to the C3bBb convertase. Upon binding, the anti-factor B autoantibody stabilized the convertase against both intrinsic and factor H-mediated extrinsic decay and thus enhanced C3 consumption. Functional analyses demonstrated that, in contrast to C3 nephritic factor, the anti-factor B autoantibody inhibited complement-mediated lysis in vitro due to inhibition of the C5 convertase and the terminal complement pathway. Analysis of C5a plasma levels indicated that not all C5 convertases are inhibited by the autoantibodies in the patient in vivo. Antigen array experiments confirmed the presence of anti-factor B autoantibodies and also revealed complement activating anti-C1q antibodies in the patient's plasma. In summary, the present report describes a new autoantibody in DDD that binds to factor B and to the alternative pathway C3 convertase and alters the kinetics of complement activation and regulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: