Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

Cellinker: a platform of ligand-receptor interactions for intercellular communication analysis.

  • Yang Zhang‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2021‎

Ligand-receptor (L-R) interactions mediate cell adhesion, recognition and communication and play essential roles in physiological and pathological signaling. With the rapid development of single-cell RNA sequencing (scRNA-seq) technologies, systematically decoding the intercellular communication network involving L-R interactions has become a focus of research. Therefore, construction of a comprehensive, high-confidence and well-organized resource to retrieve L-R interactions in order to study the functional effects of cell-cell communications would be of great value.


CellCall: integrating paired ligand-receptor and transcription factor activities for cell-cell communication.

  • Yang Zhang‎ et al.
  • Nucleic acids research‎
  • 2021‎

With the dramatic development of single-cell RNA sequencing (scRNA-seq) technologies, the systematic decoding of cell-cell communication has received great research interest. To date, several in-silico methods have been developed, but most of them lack the ability to predict the communication pathways connecting the insides and outsides of cells. Here, we developed CellCall, a toolkit to infer inter- and intracellular communication pathways by integrating paired ligand-receptor and transcription factor (TF) activity. Moreover, CellCall uses an embedded pathway activity analysis method to identify the significantly activated pathways involved in intercellular crosstalk between certain cell types. Additionally, CellCall offers a rich suite of visualization options (Circos plot, Sankey plot, bubble plot, ridge plot, etc.) to present the analysis results. Case studies on scRNA-seq datasets of human testicular cells and the tumor immune microenvironment demonstrated the reliable and unique functionality of CellCall in intercellular communication analysis and internal TF activity exploration, which were further validated experimentally. Comparative analysis of CellCall and other tools indicated that CellCall was more accurate and offered more functions. In summary, CellCall provides a sophisticated and practical tool allowing researchers to decipher intercellular communication and related internal regulatory signals based on scRNA-seq data. CellCall is freely available at https://github.com/ShellyCoder/cellcall.


Impaired cell-cell communication and axon guidance because of pulmonary hypoperfusion during postnatal alveolar development.

  • Debao Li‎ et al.
  • Respiratory research‎
  • 2023‎

Pulmonary hypoperfusion is common in children with congenital heart diseases (CHDs) or pulmonary hypertension (PH) and causes adult pulmonary dysplasia. Systematic reviews have shown that some children with CHDs or PH have mitigated clinical outcomes with COVID-19. Understanding the effects of pulmonary hypoperfusion on postnatal alveolar development may aid in the development of methods to improve the pulmonary function of children with CHDs or PH and improve their care during the COVID-19 pandemic, which is characterized by cytokine storm and persistent inflammation.


Immunological blocking of spermidine-mediated host-pathogen communication provides effective control against Pseudomonas aeruginosa infection.

  • Jianhe Wang‎ et al.
  • Microbial biotechnology‎
  • 2020‎

Pseudomonas aeruginosa is known to cause life-threatening infections. The previous studies showed that the type III secretion system (T3SS) of this pathogen is a key virulence determinant, which is activated by polyamines signals spermidine (Spd) and spermine (Spm) from mammalian host. To test the potential of blocking host-pathogen communication in disease control, in this study we developed a high potency mouse monoclonal antibody (Mab 4E4, IgG1 sub-isotype) by using Spm-protein conjugate as an immunogen. Antibody specificity analysis showed that the antibody specifically recognize Spd and Spm. In vitro study showed the antibody significantly protected A549 cells against P. aeruginosa infection, and this protection was achieved by blocking polyamine uptake and downregulating T3SS expression. In vivo single injection of mouse with Mab 4E4 drastically reduced the serum polyamine level, which was maintained for more than 1 week. In a murine model of P. aeruginosa acute infection, injection of Mab 4E4 protected mice from lung injury and significantly improved the survival rate of mice.


Structural insights into DNA recognition by AimR of the arbitrium communication system in the SPbeta phage.

  • Zeyuan Guan‎ et al.
  • Cell discovery‎
  • 2019‎

A newly identified arbitrium communication system regulates the lysis-to-lysogeny decision in a Bacillus bacteriophage. This system contains an arbitrium hexapeptide as a signal, the cellular receptor AimR, and the lysogenic negative regulator AimX. AimR specifically targets the downstream DNA to activate aimX gene expression. The arbitrium peptide binds to AimR, inhibiting its DNA-binding to promote phage lysogeny. Recently, we and other groups have elucidated how arbitrium peptide sensed by AimR. However, the molecular mechanisms of DNA recognition by AimR and the regulation of its DNA-binding activity by the peptide remain largely unknown. Here, we report the crystal structure of the AimR-DNA complex at 2.1 Å resolution. The N-terminal HTH motif recognizes the palindromic DNA sequence, buttressed by interactions between positively charged residues and the DNA phosphate groups. The DNA-bound AimR assembles a more closed dimer than the peptide-bound form. Single-molecule FRET and crosslinking assays revealed that the AimR protein samples both open and closed conformations in solution. Arbitrium peptide binding induces a closed-to-open conformational change of AimR, eliminating DNA targeting. Our structural and functional analysis provides new insights into the DNA recognition mechanism of AimR and its regulation by the arbitrium peptide in the context of phage lysis-lysogeny decisions.


A Multidimensional Assessment of Activities of Daily Living, Mental Status, Communication, and Social Abilities Among Older Adults in Shenzhen, China: Cross-Sectional Study.

  • Jing Wang‎ et al.
  • JMIR public health and surveillance‎
  • 2023‎

China is facing a rapidly expanding aging population. Insights into the health status of older adults are of great significance for health resource allocation and health care provision to this population.


High-order tensor flow processing using integrated photonic circuits.

  • Shaofu Xu‎ et al.
  • Nature communications‎
  • 2022‎

Tensor analytics lays the mathematical basis for the prosperous promotion of multiway signal processing. To increase computing throughput, mainstream processors transform tensor convolutions into matrix multiplications to enhance the parallelism of computing. However, such order-reducing transformation produces data duplicates and consumes additional memory. Here, we propose an integrated photonic tensor flow processor (PTFP) without digitally duplicating the input data. It outputs the convolved tensor as the input tensor 'flows' through the processor. The hybrid manipulation of optical wavelengths, space dimensions, and time delay steps, enables the direct representation and processing of high-order tensors in the optical domain. In the proof-of-concept experiment, an integrated processor manipulating wavelengths and delay steps is implemented for demonstrating the key functionalities of PTFP. The multi-channel images and videos are processed at the modulation rate of 20 Gbaud. A convolutional neural network for video action recognition is demonstrated on the processor, which achieves an accuracy of 97.9%.


Optical coherent dot-product chip for sophisticated deep learning regression.

  • Shaofu Xu‎ et al.
  • Light, science & applications‎
  • 2021‎

Optical implementations of neural networks (ONNs) herald the next-generation high-speed and energy-efficient deep learning computing by harnessing the technical advantages of large bandwidth and high parallelism of optics. However, due to the problems of the incomplete numerical domain, limited hardware scale, or inadequate numerical accuracy, the majority of existing ONNs were studied for basic classification tasks. Given that regression is a fundamental form of deep learning and accounts for a large part of current artificial intelligence applications, it is necessary to master deep learning regression for further development and deployment of ONNs. Here, we demonstrate a silicon-based optical coherent dot-product chip (OCDC) capable of completing deep learning regression tasks. The OCDC adopts optical fields to carry out operations in the complete real-value domain instead of in only the positive domain. Via reusing, a single chip conducts matrix multiplications and convolutions in neural networks of any complexity. Also, hardware deviations are compensated via in-situ backpropagation control provided the simplicity of chip architecture. Therefore, the OCDC meets the requirements for sophisticated regression tasks and we successfully demonstrate a representative neural network, the AUTOMAP (a cutting-edge neural network model for image reconstruction). The quality of reconstructed images by the OCDC and a 32-bit digital computer is comparable. To the best of our knowledge, there is no precedent of performing such state-of-the-art regression tasks on ONN chips. It is anticipated that the OCDC can promote the novel accomplishment of ONNs in modern AI applications including autonomous driving, natural language processing, and scientific study.


Osteopontin isoform c promotes the survival of cisplatin-treated NSCLC cells involving NFATc2-mediated suppression on calcium-induced ROS levels.

  • Jing Huang‎ et al.
  • BMC cancer‎
  • 2021‎

Tumor microenvironment (TME) critically contributed to the malignant progression of transformed cells and the chemical responses to chemotherapy reagents. Osteopontin (OPN) is a secretory onco-protein with several splicing isoforms, all of which were known to regulate tumor growth and able to alter cell-cell or cell-TME communication, however, the exact role and regulation of the OPN splicing isoforms was not well understood.


Activin a promotes myofibroblast differentiation of endometrial mesenchymal stem cells via STAT3-dependent Smad/CTGF pathway.

  • Zhenzhen Zhang‎ et al.
  • Cell communication and signaling : CCS‎
  • 2019‎

Endometriosis, characterized by the presence of functional endometrial tissues outside the uterus, is one of the most common gynecological disorders. Endometrial mesenchymal stem cells (MSCs) are crucial for the occurrence and development of endometriosis. Ectopic endometrial MSCs exist in the peritoneal cavity. Thus, the bioactive factors in endometriotic peritoneal fluid may regulate the biological behaviors of endometrial MSCs.


LOXL1 modulates the malignant progression of colorectal cancer by inhibiting the transcriptional activity of YAP.

  • Lin Hu‎ et al.
  • Cell communication and signaling : CCS‎
  • 2020‎

LOX-like 1 (LOXL1) is a lysyl oxidase, and emerging evidence has revealed its effect on malignant cancer progression. However, its role in colorectal cancer (CRC) and the underlying molecular mechanisms have not yet been elucidated.


Downregulation of exosomal CLEC3B in hepatocellular carcinoma promotes metastasis and angiogenesis via AMPK and VEGF signals.

  • Wenjuan Dai‎ et al.
  • Cell communication and signaling : CCS‎
  • 2019‎

C-Type Lectin Domain Family 3 Member B (CLEC3B), is down-regulated in serum and tumor tissues in different cancers including hepatocellular carcinoma (HCC). However, the functions of CLEC3B in HCC remains elucidated. The aim of this study is to analyze the roles of CLEC3B in HCC.


UHMK1-dependent phosphorylation of Cajal body protein coilin alters 5-FU sensitivity in colon cancer cells.

  • Huan Niu‎ et al.
  • Cell communication and signaling : CCS‎
  • 2022‎

Resistance to 5-fluorouracil (5-FU) in chemotherapy and recurrence of colorectal tumors is a serious concern that impedes improvements to clinical outcomes. In the present study, we found that conditioned medium (CM) derived from 5-FU-resistant HCT-8/FU cells reduced 5-FU chemosensitivity in HCT-8 colon cancer cells, with corresponding changes to number and morphology of Cajal bodies (CBs) as observable nuclear structures. We found that U2AF homology motif kinase 1 (UHMK1) altered CB disassembly and reassembly and regulated the phosphorylation of coilin, a major component of CBs. This subsequently resulted in a large number of variations in RNA alternative splicing that affected cell survival following 5-FU treatment, induced changes in intracellular phenotype, and transmitted preadaptive signals to adjacent cells in the tumor microenvironment (TME). Our findings suggest that CBs may be useful for indicating drug sensitivity or resistance in tumor cells in response to stress signals. The results also suggest that UHMK1 may be an important factor for maintaining CB structure and morphology by regulating splicing events, especially following cellular exposure to cytotoxic drugs. Video Abstract.


Social Media as a Research Tool (SMaaRT) for Risky Behavior Analytics: Methodological Review.

  • Tavleen Singh‎ et al.
  • JMIR public health and surveillance‎
  • 2020‎

Modifiable risky health behaviors, such as tobacco use, excessive alcohol use, being overweight, lack of physical activity, and unhealthy eating habits, are some of the major factors for developing chronic health conditions. Social media platforms have become indispensable means of communication in the digital era. They provide an opportunity for individuals to express themselves, as well as share their health-related concerns with peers and health care providers, with respect to risky behaviors. Such peer interactions can be utilized as valuable data sources to better understand inter-and intrapersonal psychosocial mediators and the mechanisms of social influence that drive behavior change.


Epigenetic regulation of osteopontin splicing isoform c defines its role as a microenvironmental factor to promote the survival of colon cancer cells from 5-FU treatment.

  • Siyuan Chang‎ et al.
  • Cancer cell international‎
  • 2020‎

Drug resistance to 5-fluorouracil (5-FU) and recurrence after chemotherapy in colorectal cancer remain a challenge to be resolved for the improvement of patient outcomes. It is recognized that a variety of secretory proteins released from the tumor cells exposed to chemo-drugs into the tumor microenvironment (TME) contributed to the cell-to-cell communication, and altered the drug sensitivity. One of these important factors is osteopontin (OPN), which exists in several functional forms from alternative splicing and post-translational processing. In colon cancer cells, increased total OPN expression was observed during the progression of tumors, however, the exact role and regulation of the OPN splicing isoforms was not well understood.


Using wearable biological sensors to provide personalized feedback to motivate behavioral changes: Study protocol for a randomized controlled physical activity intervention in cancer survivors (Project KNOWN).

  • Yue Liao‎ et al.
  • PloS one‎
  • 2022‎

Regular physical activity reduces the progression of several cancers and offers physical and mental health benefits for cancer survivors. However, many cancer survivors are not sufficiently active to achieve these health benefits. Possible biological mechanisms through which physical activity could affect cancer progression include reduced systemic inflammation and positive changes in metabolic markers. Chronic and acute hyperglycemia could have downstream effects on cell proliferation and tumorigenesis. One novel strategy to motivate cancer survivors to be more active is to provide personalized biological-based feedback that demonstrates the immediate positive impact of physical activity. Continuous glucose monitors (CGMs) have been used to demonstrate the acute beneficial effects of physical activity on insulin sensitivity and glucose metabolisms in controlled lab settings. Using personal data from CGMs to illustrate the immediate impact of physical activity on glucose patterns could be particularly relevant for cancer survivors because they are at a higher risk for developing type 2 diabetes (T2D). As a pilot project, this study aims to (1) test the preliminary effect of a remotely delivered physical activity intervention that incorporates personalized biological-based feedback on daily physical activity levels, and (2) explore the association between daily glucose patterns and cancer-related insulin pathway and inflammatory biomarkers in cancer survivors who are at high risk for T2D. We will recruit 50 insufficiently active, post-treatment cancer survivors who are at elevated risk for T2D. Participants will be randomly assigned into (1) a group that receives personalized biological feedback related to physical activity behaviors; and (2) a control group that receives standard educational material. The feasibility and preliminary efficacy of this wearable sensor-based, biofeedback-enhanced 12-week physical activity intervention will be evaluated. Data from this study will support the further refinement and enhancement of a more comprehensive remotely delivered physical activity intervention that targets cancer survivors. Trial registration: ClinicalTrials.gov Identifier: NCT05490641.


Transcriptomics of Gabra4 knockout mice reveals common NMDAR pathways underlying autism, memory, and epilepsy.

  • Cuixia Fan‎ et al.
  • Molecular autism‎
  • 2020‎

Autism spectrum disorder (ASD) is a neuronal developmental disorder with impaired social interaction and communication, often with abnormal intelligence and comorbidity with epilepsy. Disturbances in synaptic transmission, including the GABAergic, glutamatergic, and serotonergic systems, are known to be involved in the pathogenesis of this disorder, yet we do not know if there is a common molecular mechanism. As mutations in the GABAergic receptor subunit gene GABRA4 are reported in patients with ASD, we eliminated the Gabra4 gene in mice and found that the Gabra4 knockout mice showed autistic-like behavior, enhanced spatial memory, and attenuated susceptibility to pentylenetetrazol-induced seizures, a constellation of symptoms resembling human high-functioning autism. To search for potential molecular pathways involved in these phenotypes, we performed a hippocampal transcriptome profiling, constructed a hippocampal interactome network, and revealed an upregulation of the NMDAR system at the center of the converged pathways underlying high-functioning autism-like and anti-epilepsy phenotypes.


Primary specification of blastocyst trophectoderm by scRNA-seq: New insights into embryo implantation.

  • Dandan Liu‎ et al.
  • Science advances‎
  • 2022‎

Mechanisms of implantation such as determination of the attachment pole, fetal-maternal communication, and underlying causes of implantation failure are largely unexplored. Here, we performed single-cell RNA sequencing on peri-implantation embryos from both humans and mice to explore trophectoderm (TE) development and embryo-endometrium cross-talk. We found that the transcriptomes of polar and mural TE diverged after embryos hatched from the zona pellucida in both species, with polar TE being more mature than mural TE. The implantation poles show similarities in cell cycle activities, as well as in expression of genes critical for implantation and placentation. Embryos that either fail to attach in vitro or fail to implant in vivo show abnormalities in pathways related to energy production, protein metabolism, and 18S ribosomal RNA m6A methylation. These findings uncover the gene expression characteristics of humans and mice TE differentiation during the peri-implantation period and provide new insights into embryo implantation.


Prenatal low-dose methylmercury exposure causes premature neuronal differentiation and autism-like behaviors in a rodent model.

  • Allison Loan‎ et al.
  • iScience‎
  • 2023‎

Aberrant neurodevelopment is a core deficit of autism spectrum disorder (ASD). Here we ask whether a non-genetic factor, prenatal exposure to the environmental pollutant methylmercury (MeHg), is a contributing factor in ASD onset. We showed that adult mice prenatally exposed to non-apoptotic MeHg exhibited key ASD characteristics, including impaired communication, reduced sociability, and increased restrictive repetitive behaviors, whereas in the embryonic cortex, prenatal MeHg exposure caused premature neuronal differentiation. Further single-cell RNA sequencing (scRNA-seq) analysis disclosed that prenatal exposure to MeHg resulted in cortical radial glial precursors (RGPs) favoring asymmetric differentiation to directly generate cortical neurons, omitting the intermediate progenitor stage. In addition, MeHg exposure in cultured RGPs increased CREB phosphorylation and enhanced the interaction between CREB and CREB binding protein (CBP). Intriguingly, metformin, an FDA-approved drug, can reverse MeHg-induced premature neuronal differentiation via CREB/CBP repulsion. These findings provide insights into ASD etiology, its underlying mechanism, and a potential therapeutic strategy.


Robust Myelination of Regenerated Axons Induced by Combined Manipulations of GPR17 and Microglia.

  • Jing Wang‎ et al.
  • Neuron‎
  • 2020‎

Myelination facilitates rapid axonal conduction, enabling efficient communication across different parts of the nervous system. Here we examined mechanisms controlling myelination after injury and during axon regeneration in the central nervous system (CNS). Previously, we discovered multiple molecular pathways and strategies that could promote robust axon regrowth after optic nerve injury. However, regenerated axons remain unmyelinated, and the underlying mechanisms are elusive. In this study, we found that, in injured optic nerves, oligodendrocyte precursor cells (OPCs) undergo transient proliferation but fail to differentiate into mature myelination-competent oligodendrocytes, reminiscent of what is observed in human progressive multiple sclerosis. Mechanistically, we showed that OPC-intrinsic GPR17 signaling and sustained activation of microglia inhibit different stages of OPC differentiation. Importantly, co-manipulation of GPR17 and microglia led to extensive myelination of regenerated axons. The regulatory mechanisms of stage-dependent OPC differentiation uncovered here suggest a translatable strategy for efficient de novo myelination after CNS injury.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: