Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Elongation factor P restricts Salmonella's growth by controlling translation of a Mg2+ transporter gene during infection.

  • Eunna Choi‎ et al.
  • Scientific reports‎
  • 2017‎

When a ribosome translates mRNA sequences, the ribosome often stalls at certain codons because it is hard to translate. Consecutive proline codons are such examples that induce ribosome stalling and elongation factor P (EF-P) is required for the stalled ribosome to continue translation at those consecutive proline codons. We found that EF-P is required for translation of the mgtB gene encoding a Mg2+ transporter in the mgtCBR virulence operon from the intracellular pathogen Salmonella enterica serovar Typhimurium. Salmonella lacking EF-P decreases MgtB protein levels in a manner dependent on consecutive proline codons located in the mgtB coding region despite increasing transcription of the mgtCBR operon via the mgtP open reading frame in the leader RNA, resulting in an altered ratio between MgtC and MgtB proteins within the operon. Substitution of the consecutive proline codons to alanine codons eliminates EF-P-mediated control of the mgtB gene during infection and thus contributes to Salmonella's survival inside macrophages where Salmonella experiences low levels of EF-P. This suggests that this pathogen utilizes a strategy to coordinate expression of virulence genes by an evolutionarily conserved translation factor.


The Salmonella virulence protein MgtC promotes phosphate uptake inside macrophages.

  • Soomin Choi‎ et al.
  • Nature communications‎
  • 2019‎

The MgtC virulence protein from the intracellular pathogen Salmonella enterica is required for its intramacrophage survival and virulence in mice and this requirement of MgtC is conserved in several intracellular pathogens including Mycobacterium tuberculosis. Despite its critical role in survival within macrophages, only a few molecular targets of the MgtC protein have been identified. Here, we report that MgtC targets PhoR histidine kinase and activates phosphate transport independently of the available phosphate concentration. A single amino acid substitution in PhoR prevents its binding to MgtC, thus abrogating MgtC-mediated phosphate transport. Surprisingly, the removal of MgtC's effect on the ability to transport phosphate renders Salmonella hypervirulent and decreases a non-replicating population inside macrophages, indicating that MgtC-mediated phosphate transport is required for normal Salmonella pathogenesis. This provides an example of a virulence protein directly activating a pathogen's phosphate transport inside host.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: