2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Role of Festuca rubra and Festuca arundinacea in determinig the functional and genetic diversity of microorganisms and of the enzymatic activity in the soil polluted with diesel oil.

  • Agata Borowik‎ et al.
  • Environmental science and pollution research international‎
  • 2019‎

The objective of this study was to analyze the effect of two grass species, i.e. red fescue (Festuca rubra) and tall fescue (F. arundinacea), on the functional and genetic diversity of soil-dwelling microorganisms and on the enzymatic activity of soil not polluted and polluted with diesel oil. Grasses were examined for their effectiveness in accelerating degradation of PAHs introduced into soil with diesel oil. A growing experiment was conducted in Kick-Brauckman pots. The soil not polluted and polluted with diesel oil (7 cm3 kg-1 d.m.) was determined for the count of bacteria, colony development index, ecophysiological diversity index, functional diversity (using Biolog system), genetic diversity of bacteria (using NGS), enzymatic activity, and content of hydrocarbons. Study results demonstrated disturbed homeostasis of soil. The toxic effect of diesel oil on grasses alleviate with time since soil pollution. The yield of the first swath of red fescue decreased by 98% and that of tall fescue by 92%, whereas the yields of the second swath decreased by 82% and 89%, and these of the third swath by 50% and 47%, respectively. Diesel oil diminished also the functional and genetic diversity of bacteria. The use of grasses significantly decreased contents of C6-C12 (gasoline total), C12-C35 mineral oils, BTEX (volatile aromatic hydrocarbons), and PAHs in the soil, as well as enabled restoring the microbiological equilibrium in the soil, and increased functional and genetic diversity of bacteria. For this reason, both analyzed grass species, i.e. Festuca rubra and F. arundinacea, may be recommended for the remediation of soil polluted with diesel oil.


Soil Microbiome Response to Contamination with Bisphenol A, Bisphenol F and Bisphenol S.

  • Magdalena Zaborowska‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The choice of the study objective was affected by numerous controversies and concerns around bisphenol F (BPF) and bisphenol S (BPS)-analogues of bisphenol A (BPA). The study focused on the determination and comparison of the scale of the BPA, BPF, and BPS impact on the soil microbiome and its enzymatic activity. The following parameters were determined in soil uncontaminated and contaminated with BPA, BPF, and BPS: the count of eleven groups of microorganisms, colony development (CD) index, microorganism ecophysiological diversity (EP) index, genetic diversity of bacteria and activity of dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), arylsulphatase (Aryl) and β-glucosidase (Glu). Bisphenols A, S and F significantly disrupted the soil homeostasis. BPF is regarded as the most toxic, followed by BPS and BPA. BPF and BPS reduced the abundance of Proteobacteria and Acidobacteria and increased that of Actinobacteria. Unique types of bacteria were identified as well as the characteristics of each bisphenol: Lysobacter, Steroidobacter, Variovorax, Mycoplana, for BPA, Caldilinea, Arthrobacter, Cellulosimicrobium and Promicromonospora for BPF and Dactylosporangium Geodermatophilus, Sphingopyxis for BPS. Considering the strength of a negative impact of bisphenols on the soil biochemical activity, they can be arranged as follows: BPS > BPF > BPA. Urease and arylsulphatase proved to be the most susceptible and dehydrogenases the least susceptible to bisphenols pressure, regardless of the study duration.


Perna canaliculus as an Ecological Material in the Removal of o-Cresol Pollutants from Soil.

  • Magdalena Zaborowska‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2021‎

Soil contamination with cresol is a problem of the 21st century and poses a threat to soil microorganisms, humans, animals, and plants. The lack of precise data on the potential toxicity of o-cresol in soil microbiome and biochemical activity, as well as the search for effective remediation methods, inspired the aim of this study. Soil is subjected to four levels of contamination with o-cresol: 0, 0.1, 1, 10, and 50 mg o-cresol kg-1 dry matter (DM) of soil and the following are determined: the count of eight groups of microorganisms, colony development index (CD) and ecophysiological diversity index (EP) for organotrophic bacteria, actinobacteria and fungi, and the bacterial genetic diversity. Moreover, the responses of seven soil enzymes are investigated. Perna canaliculus is a recognized biosorbent of organic pollutants. Therefore, microbial biostimulation with Perna canaliculus shells is used to eliminate the negative effect of the phenolic compound on the soil microbiome. Fungi appears to be the microorganisms most sensitive to o-cresol, while Pseudomonas sp. is the least sensitive. In o-cresol-contaminated soils, the microbiome is represented mainly by the bacteria of the Proteobacteria and Firmicutes phyla. Acid phosphatase, alkaline phosphatase and urease can be regarded as sensitive indicators of soil disturbance. Perna canaliculus shells prove to be an effective biostimulator of soil under pressure with o-cresol.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: