2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 113 papers

Endogenous Collagenases Regulate Osteoclast Fusion.

  • Hyo Jeong Kim‎ et al.
  • Biomolecules‎
  • 2020‎

The precise regulation of osteoclast differentiation and function is crucial for the maintenance of healthy bone. Despite several reports of collagenase expression in bone tissues, the precise isoform expression as well as the role in osteoclasts are still unclear. In the present report, the expression of matrix metalloprotease (MMP)8 and MMP13 was confirmed in mouse bone marrow macrophage osteoclast precursors. The mRNA and protein expressions of both collagenases were significantly reduced by receptor activator of nuclear factor κB ligand (RANKL) stimulation. Notably, either inhibition of MMP expression by siRNA or treatment of cells with collagenase inhibitor Ro 32-3555 significantly augmented osteoclast fusion and resorption activity without affecting the osteoclast number. The inhibition of collagenase by Ro 32-3555 increased the expression of osteoclast fusion genes, Atp6v0d2 and Dcstamp, without affecting nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) protein expression. The enhanced osteoclast fusion by collagenase inhibition appears to be mediated through an extracellular signal regulated kinase (ERK)-dependent pathway. Collectively, these data provide novel information on the regulation of osteoclast fusion process.


N-Aryl-3-mercaptosuccinimides as Antivirulence Agents Targeting Pseudomonas aeruginosa Elastase and Clostridium Collagenases.

  • Jelena Konstantinović‎ et al.
  • Journal of medicinal chemistry‎
  • 2020‎

In light of the global antimicrobial-resistance crisis, there is an urgent need for novel bacterial targets and antibiotics with novel modes of action. It has been shown that Pseudomonas aeruginosa elastase (LasB) and Clostridium histolyticum (Hathewaya histolytica) collagenase (ColH) play a significant role in the infection process and thereby represent promising antivirulence targets. Here, we report novel N-aryl-3-mercaptosuccinimide inhibitors that target both LasB and ColH, displaying potent activities in vitro and high selectivity for the bacterial over human metalloproteases. Additionally, the inhibitors demonstrate no signs of cytotoxicity against selected human cell lines and in a zebrafish embryo toxicity model. Furthermore, the most active ColH inhibitor shows a significant reduction of collagen degradation in an ex vivo pig-skin model.


Effects of monocyte-endothelium interactions on the expression of type IV collagenases in monocytes.

  • Yong-Qin Li‎ et al.
  • Experimental and therapeutic medicine‎
  • 2015‎

The adhesion of monocytes to endothelial cells is one of the early stages in the development of atherosclerosis. The expression of type IV collagenases, which include matrix metalloproteinase (MMP)-2 and MMP-9, in monocytes is hypothesized to play an important role in monocyte infiltration and transformation into foam cells. The aim of the present study was to examine the effects of monocyte-endothelium interactions on the expression levels of type IV collagenases and their specific inhibitors in monocytes, and to investigate the roles of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in this process. Monocytes were single-cultured or co-cultured with endothelial cells. The expression of the type IV collagenases, MMP-2 and MMP-9, and their specific inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, in monocytes was determined by immunohistochemistry followed by image analysis. The expression levels of MMP-2 and MMP-9 were found to be low in the single-culture monocytes, but increased significantly when the monocytes and endothelial cells were co-cultured. However, treatment with monoclonal TNF-α or IL-1β antibodies partially inhibited the upregulated expression of MMP-2 and MMP-9 in the co-cultured monocytes. Expression of TIMP-1 and TIMP-2 was observed in the single monocyte culture, and a small increase in the expression levels was observed when the monocytes were co-cultured with endothelial cells. Therefore, monocyte-endothlium interactions were shown to increase the expression of type IV collagenases in monocytes, resulting in the loss of balance between MMP-2 and -9 with TIMP-1 and -2. In addition, TNF-α and IL-1β were demonstrated to play important roles in this process.


An improved collagen zymography approach for evaluating the collagenases MMP-1, MMP-8, and MMP-13.

  • Seniz Inanc‎ et al.
  • BioTechniques‎
  • 2017‎

Collagen zymography is an SDS-PAGE-based method for detecting both the proenzyme and active forms of collagenases. Although collagen zymography is used for assessment of the matrix metalloproteinases MMP-1 and MMP-13, it can be difficult to detect these collagenases due to technical issues. Moreover, it remains unclear whether the collagenase activity of MMP-8 can be detected by this method. Here, we present an improved collagen zymography method that allows quantification of the activities of MMP-1, MMP-8, and MMP-13. Activities of recombinant collagenases could be detected in collagen zymogram gels copolymerized with 0.3 mg/mL type I collagen extracted from rat tail tendon. This improved method is sensitive enough to detect the activity of as little as 1 ng of collagenase. We generated standard curves for the three collagenases to quantify the collagenolytic activity levels of unknown samples. To validate our improved method, we investigated MMP-1 activity levels in human thyroid cancer (8505C) and normal thyroid (Nthy-ori-3-1) cell lines, finding that the proenzyme and active MMP-1 levels were greater in 8505C cells than in Nthy-ori-3-1 cells. Taken together, our data show that collagen zymography can be used in both molecular and clinical investigations to evaluate collagenase activities in various pathological conditions.


A universal strategy for high-yield production of soluble and functional clostridial collagenases in E. coli.

  • Paulina Ducka‎ et al.
  • Applied microbiology and biotechnology‎
  • 2009‎

Clostridial collagenases are foe and friend: on the one hand, these enzymes enable host infiltration and colonization by pathogenic clostridia, and on the other hand, they are valuable biotechnological tools due to their capacity to degrade various types of collagen and gelatine. However, the demand for high-grade preparations exceeds supply due to their pathogenic origin and the intricate purification of homogeneous isoforms. We present the establishment of an Escherichia coli expression system for a variety of constructs of collagenase G (ColG) and H (ColH) from Clostridium histolyticum and collagenase T (ColT) from Clostridium tetani, mimicking the isoforms in vivo. Based on a setup of five different expression strains and two expression vectors, 12 different constructs were expressed, and a flexible purification platform was established, consisting of various orthogonal chromatography steps adaptable to the individual needs of the respective variant. This fast, cost-effective, and easy-to-establish platform enabled us to obtain at least 10 mg of highly pure mono-isoformic protein per liter of culture, ideally suited for numerous sophisticated downstream applications. This production and purification platform paves the way for systematic screenings of recombinant collagenases to enlighten the biochemical function and to identify key residues and motifs in collagenolysis.


Discovery and Characterization of Synthesized and FDA-Approved Inhibitors of Clostridial and Bacillary Collagenases.

  • Alaa Alhayek‎ et al.
  • Journal of medicinal chemistry‎
  • 2022‎

In view of the worldwide antimicrobial resistance (AMR) threat, new bacterial targets and anti-infective agents are needed. Since important roles in bacterial pathogenesis have been demonstrated for the collagenase H and G (ColH and ColG) from Clostridium histolyticum, collagenase Q1 and A (ColQ1 and ColA) from Bacillus cereus represent attractive antivirulence targets. Furthermore, repurposing FDA-approved drugs may assist to tackle the AMR crisis and was addressed in this work. Here, we report on the discovery of two potent and chemically stable bacterial collagenase inhibitors: synthesized and FDA-approved diphosphonates and hydroxamates. Both classes showed high in vitro activity against the clostridial and bacillary collagenases. The potent diphosphonates reduced B. cereus-mediated detachment and death of cells and Galleria mellonella larvae. The hydroxamates were also tested in a similar manner; they did not have an effect in infection models. This might be due to their fast binding kinetics to bacterial collagenases.


Structural basis for activity regulation and substrate preference of clostridial collagenases G, H, and T.

  • Ulrich Eckhard‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

Clostridial collagenases are among the most efficient enzymes to degrade by far the most predominant protein in the biosphere. Here we present crystal structures of the peptidases of three clostridial collagenase isoforms (ColG, ColH, and ColT). The comparison of unliganded and liganded structures reveals a quaternary subdomain dynamics. In the unliganded ColH structure, this globular dynamics is modulated by an aspartate switch motion that binds to the catalytic zinc. We further identified a calcium binding site in proximity to the catalytic zinc. Both ions are required for full activity, explaining why calcium critically affects the enzymatic activity of clostridial collagenases. Our studies further reveal that loops close to the active site thus serve as characteristic substrate selectivity filter. These elements explain the distinct peptidolytic and collagenolytic activities of these enzymes and provide a rational framework to engineer collagenases with customized substrate specificity as well as for inhibitor design.


Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen.

  • Ulrich Eckhard‎ et al.
  • Journal of proteomics‎
  • 2014‎

Clostridial collagenases are among the most efficient degraders of collagen. Most clostridia are saprophytes and secrete proteases to utilize proteins in their environment as carbon sources; during anaerobic infections, collagenases play a crucial role in host colonization. Several medical and biotechnological applications have emerged utilizing their high collagenolytic efficiency. However, the contribution of the functionally most important peptidase domain to substrate specificity remains unresolved. We investigated the active site sequence specificity of the peptidase domains of collagenase G and H from Clostridium histolyticum and collagenase T from Clostridium tetani. Both prime and non-prime cleavage site specificity were simultaneously profiled using Proteomic Identification of protease Cleavage Sites (PICS), a mass spectrometry-based method utilizing database searchable proteome-derived peptide libraries. For each enzyme we identified >100 unique-cleaved peptides, resulting in robust cleavage logos revealing collagen-like specificity patterns: a strong preference for glycine in P3 and P1', proline at P2 and P2', and a slightly looser specificity at P1, which in collagen is typically occupied by hydroxyproline. This specificity for the classic collagen motifs Gly-Pro-X and Gly-X-Hyp represents a remarkable adaptation considering the complex requirements for substrate unfolding and presentation that need to be fulfilled before a single collagen strand becomes accessible for cleavage.


Optimization of Collagenase Production by Pseudoalteromonas sp. SJN2 and Application of Collagenases in the Preparation of Antioxidative Hydrolysates.

  • Xinghao Yang‎ et al.
  • Marine drugs‎
  • 2017‎

Collagenases are the most important group of commercially-produced enzymes. However, even though biological resources are abundant in the sea, very few of these commercially popular enzymes are from marine sources, especially from marine bacteria. We optimized the production of marine collagenases by Pseudoalteromonas sp. SJN2 and investigated the antioxidant activities of the hydrolysates. Media components and culture conditions associated with marine collagenase production by Pseudoalteromonas sp. SJN2 were optimized by statistical methods, namely Plackett-Burman design and response surface methodology (RSM). Furthermore, the marine collagenases produced by Pseudoalteromonas sp. SJN2 were seen to efficiently hydrolyze marine collagens extracted from fish by-products, and remarkable antioxidant capacities of the enzymatic hydrolysates were shown by DPPH radical scavenging and oxygen radical absorbance capacity (ORAC) tests. The final optimized fermentation conditions were as follows: soybean powder, 34.23 g·L-1; culture time, 3.72 d; and temperature, 17.32 °C. Under the optimal fermentation conditions, the experimental collagenase yield obtained was 322.58 ± 9.61 U·mL-1, which was in agreement with the predicted yield of 306.68 U·mL-1. Collagen from Spanish mackerel bone, seabream scale and octopus flesh also showed higher DPPH radical scavenging rates and ORAC values after hydrolysis by the collagenase. This study may have implications for the development and use of marine collagenases. Moreover, seafood waste containing beneficial collagen could be used to produce antioxidant peptides by proteolysis.


Evaluation of matrix metalloproteinase type IV-collagenases in serum of patients with tumors of the central nervous system.

  • Serena Ricci‎ et al.
  • Journal of neuro-oncology‎
  • 2017‎

The basement membrane collagen IV-degrading matrix metalloproteinases -2 and -9 (MMPs) are most often linked to the malignant phenotype of tumor cells by playing a critical role in invasion, metastasis, angiogenesis, and vasculogenesis. We verified the activity of these two MMPs in the sera of patients affected by brain tumors (20 gliomas, 28 meningiomas and 20 metastasis) by zymography. The sera of 25 healthy volunteers with no concomitant illnesses were used for controls. Zymography showed four dominant gelatinolytic bands of 240, 130, 92 (MMP-9) and 72 (MMP-2) kDa. No statistically significant variations of MMP-2 proteolytic activity between patients and healthy individuals were observed. On the contrary, MMP-9 (both monomeric and multimeric forms) lytic activities were significantly higher in tumors specimens compared to healthy controls (p < 0.001). Moreover, MMP-9 immunohistochemistry revealed: (1) a strong reactivity in neoplastic vessels of high-grade gliomas showing an inverse correlation with serum multimeric gelatinolytic activity; (2) a cytoplasmatic reactivity in meningiomas with a significantly increase in atypical meningioma compared with low-grade ones (p = 0.036); (3) a positive correlation between MMP-9 and Ki-67 (Sperman Rho coefficient r = 0.418 and p = 0.034). Our results suggest that serum and tissue MMP-9 might provide clinicians additional objective information in intracranial neoplasms. Finally, it should be possible to use MMP-9 as a target for new forms of therapy. Nevertheless, due to the small number of patients included in the study, the conclusion may not be transferable to the general population and therefore further evaluations are needed.


Laboratory Grown Biofilms of Bacteria Associated with Human Atherosclerotic Carotid Arteries Release Collagenases and Gelatinases during Iron-Induced Dispersion.

  • Amanda M Zdimal‎ et al.
  • Microbiology spectrum‎
  • 2022‎

The association of bacteria with arterial plaque lesions in patients with atherosclerosis has been widely reported. However, the role these bacteria play in the progression of atherosclerosis is still unclear. Previous work in our lab has demonstrated that bacteria exist in carotid artery plaques as biofilm deposits. Biofilms are communities of microorganisms enmeshed within a protective, self-produced extracellular matrix and have been shown to contribute to chronic infections in humans. Biofilm communities have the potential to impact surrounding tissues in an infection if they undergo a dispersion response, releasing bacteria into the surrounding environment by enzymatic degradation of the extracellular matrix. One concern relating to these enzymes is that they could cause collateral damage to host tissues. In this study, we present an in vitro multispecies biofilm culturing model used to investigate the potential role of bacterial biofilm dispersion in the progression of atherosclerosis. This work has demonstrated an increase in cell release from mixed-species biofilms formed by bacteria associated with human carotid arterial plaque deposits following treatment with iron or a combination of norepinephrine and transferrin. Greater extracellular lipase, protease, and collagenase/gelatinase activity was also associated with iron-treated biofilms. The results of this work suggest that bacteria in this model undergo iron-induced biofilm dispersion, as evidenced by the increased cell release and higher enzyme activity following treatment. This work demonstrates the potential for multispecies biofilm dispersion to contribute to arterial tissue degradation by bacteria and suggests that in atherosclerotic infections, biofilm dispersion may contribute to thrombogenesis, which can lead to heart attack or stroke. IMPORTANCE Atherosclerosis, or hardening of the arteries, is a leading cause of congestive heart failure, heart attack, and stroke in humans. Mounting evidence, in the literature and from our lab, points to the regular involvement of bacteria within arterial plaque deposits in patients with advanced atherosclerosis. Very little is known about the behavior of these bacteria and whether they may contribute to tissue damage in infected arteries. Tissue damage within the arterial plaque lesion can lead to rupture of the plaque contents into the bloodstream, where a clot may form, resulting in a potential heart attack or stroke. This study shows that plaque-associated bacteria, when cultured as mixed-species biofilms in the laboratory, can release degradative enzymes into their environment as the result of a dispersion response triggered by iron. These degradative enzymes can digest proteins and lipids which are associated with the tissues that separate the plaque lesion from the arterial lumen. Thus, this study demonstrates that if mixed species biofilms are induced to undergo dispersion in an infected atherosclerotic lesion when exposed to an elevated concentration of free iron, they have the potential to contribute to the weakening of arterial tissues, which may contribute to atherosclerotic plaque destabilization.


Effect of shRNA Mediated Silencing of YB-1 Protein on the Expression of Matrix Collagenases in Malignant Melanoma Cell In Vitro.

  • Wisam Nabeel Ibrahim‎ et al.
  • Cells‎
  • 2018‎

Background and Objective: YB-1 is a transcription and oncogenic factor capable of binding to DNA and RNA performing versatile functions within normal and cancer cells. Some studies reported the binding of YB-1 with a collagenases gene promoter and influencing their expression. In addition, the role of YB-1 in malignant melanoma was not elucidated. Thus, in this study, the aim was to knock down the expression of YB-1 in A375 malignant melanoma cancer cell using the shRNA approach and study its effect on cancer cell proliferation, migration, and expression of collagenases. Methods: A375 malignant melanoma cell lines were grown in standard conditions and were transfected with three plasmids containing a retroviral pGFP-V-RS vector, two of them containing targeting sequences for YB-1 mRNA. The third plasmid contained a scrambled mRNA sequence as a negative control. Expression of YB-1 was validated using immune-fluorescence staining, RT-PCR and western blotting. The cancer cell proliferation was determined using MTT assay, serial trypan blue cell counting and cell cycle flow-cytometry analysis. Expression of collagenases (MMP1, MMP8, and MMP13) was evaluated using RT-PCR and western blotting analysis. In addition, a wound-healing assay was used to assess cell migration potential. Statistical analysis was performed using one-way ANOVA test with Bonferroni post hoc analysis to compare the quantitative results among samples. Results: The established silenced cell strains (P1 and P2) had nearly 70% knockdown in the expression of YB-1. These YB-1 silenced strains had a significant cell cycle-specific reduction in cell proliferation (p < 0.05 in serial cell counting and cell cycle flow cytometry analysis, p < 0.001 in MTT assay). In addition, YB-1 silenced strains had a remarkable reduction in cell migration potential. Expression of MMP13 was significantly reduced in YB-1 silenced strains. Conclusion: YB-1 oncoprotein is a promising target in the treatment of malignant melanoma. Silencing of this protein is associated with significant anti-proliferative, anti-invasive and MMP13 insulating properties in A375 malignant melanoma cancer cell lines.


Expression of collagenases (matrix metalloproteinase-1, 8, 13) and tissue inhibitor of metalloproteinase-1 of retrodiscal tissue in temporomandibular joint disorder patients.

  • Won Gyung Gho‎ et al.
  • Journal of the Korean Association of Oral and Maxillofacial Surgeons‎
  • 2018‎

The aim of this study was to reveal how collagenases (matrix metalloproteinase [MMP]-1, 8, 13) and tissue inhibitor of metalloproteinase 1 (TIMP-1) are expressed in immunohistochemistry of retrodiscal tissue in temporomandibular joint disorder patients.


Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579.

  • Carmen M Abfalter‎ et al.
  • PloS one‎
  • 2016‎

Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications.


Biochemical characterisation of a collagenase from Bacillus cereus strain Q1.

  • Isabel J Hoppe‎ et al.
  • Scientific reports‎
  • 2021‎

Collagen is the most abundant protein in higher animals and as such it is a valuable source of amino acids and carbon for saprophytic bacteria. Due to its unique amino acid composition and triple-helical tertiary structure it can however only be cleaved by specialized proteases like the collagenases secreted by some bacteria. Among the best described bacterial collagenases are ColG and ColH from Clostridium histolyticum. Many Bacillus species contain homologues of clostridial collagenases, which play a role in some infections caused by B. cereus. Detailed biochemical and enzymatic characterizations of bacillial collagenases are however lacking at this time. In an effort to close this gap in knowledge we expressed ColQ1 from B. cereus strain Q1 recombinantly, investigated its metal dependency and performed peptide, gelatin and collagen degradation assays. Our results show that ColQ1 is a true collagenase, cleaving natively folded collagen six times more efficiently than ColG while at the same time being a similarly effective peptidase as ColH. In both ColQ1 and ColG the rate-limiting step in collagenolysis is the unwinding of the triple-helix. The data suggest an orchestrated multi-domain mechanism for efficient helicase activity.


Increased type II collagen cleavage by cathepsin K and collagenase activities with aging and osteoarthritis in human articular cartilage.

  • Valeria M Dejica‎ et al.
  • Arthritis research & therapy‎
  • 2012‎

The intra-helical cleavage of type II collagen by proteases, including collagenases and cathepsin K, is increased with aging and osteoarthritis (OA) in cartilage as determined by immunochemical assays. The distinct sites of collagen cleavage generated by collagenases and cathepsin K in healthy and OA human femoral condylar cartilages were identified and compared.


Intra-articular collagenase injection increases range of motion in a rat knee flexion contracture model.

  • Kayleigh Wong‎ et al.
  • Drug design, development and therapy‎
  • 2018‎

A knee joint contracture, a loss in passive range of motion (ROM), can be caused by prolonged immobility. In a rat knee immobilization flexion contracture model, the posterior capsule was shown to contribute to an irreversible limitation in ROM, and collagen pathways were identified as differentially expressed over the development of a contracture. Collagenases purified from Clostridium histolyticum are currently prescribed to treat Dupuytren's and Peyronie's contractures due to their ability to degrade collagen. The potential application of collagenases to target collagen in the posterior capsule was tested in this model.


Surgical techniques for sciatica due to herniated disc, a systematic review.

  • Wilco C H Jacobs‎ et al.
  • European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society‎
  • 2012‎

Disc herniation with sciatica accounts for five percent of low-back disorders but is one of the most common reasons for spine surgery. The goal of this study was to update the Cochrane review on the effect of surgical techniques for sciatica due to disc herniation, which was last updated in 2007.


Inhibition of Collagenase Q1 of Bacillus cereus as a Novel Antivirulence Strategy for the Treatment of Skin-Wound Infections.

  • Alaa Alhayek‎ et al.
  • Advanced therapeutics‎
  • 2022‎

Despite the progress in surgical techniques and antibiotic prophylaxis, opportunistic wound infections with Bacillus cereus remain a public health problem. Secreted toxins are one of the main factors contributing to B. cereus pathogenicity. A promising strategy to treat such infections is to target these toxins and not the bacteria. Although the exoenzymes produced by B. cereus are thoroughly investigated, little is known about the role of B. cereus collagenases in wound infections. In this report, the collagenolytic activity of secreted collagenases (Col) is characterized in the B. cereus culture supernatant (csn) and its isolated recombinantly produced ColQ1 is characterized. The data reveals that ColQ1 causes damage on dermal collagen (COL). This results in gaps in the tissue, which might facilitate the spread of bacteria. The importance of B. cereus collagenases is also demonstrated in disease promotion using two inhibitors. Compound 2 shows high efficacy in peptidolytic, gelatinolytic, and COL degradation assays. It also preserves the fibrillar COLs in skin tissue challenged with ColQ1, as well as the viability of skin cells treated with B. cereus csn. A Galleria mellonella model highlights the significance of collagenase inhibition in vivo.


Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production.

  • Monica Salamone‎ et al.
  • Microorganisms‎
  • 2019‎

Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: