Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli.

  • Junyoung Kim‎ et al.
  • Scientific reports‎
  • 2017‎

Itaconate, a C5 unsaturated dicarboxylic acid, is an important chemical building block that is used in manufacturing high-value products, such as latex and superabsorbent polymers. Itaconate is produced by fermentation of sugars by the filamentous fungus Aspergillus terreus. However, fermentation by A. terreus involves a long fermentation period and the formation of various byproducts, resulting in high production costs. E. coli has been developed as an alternative for producing itaconate. However, fermentation of glucose gives low conversion yields and low productivity. Here, we report the whole-cell bioconversion of citrate to itaconate with enhanced aconitase and cis-aconitate decarboxylase activities by controlling the expression of multiple cadA genes. In addition, this bioconversion system does not require the use of buffers, which reduces the production cost and the byproducts released during purification. Using this whole-cell bioconversion system, we were able to catalyze the conversion of 319.8 mM of itaconate (41.6 g/L) from 500 mM citrate without any buffer system or additional cofactors, with 64.0% conversion in 19 h and a productivity of 2.19 g/L/h. Our bioconversion system suggests very high productivity for itaconate production.


EZH2 presents a therapeutic target for neuroendocrine tumors of the small intestine.

  • Elham Barazeghi‎ et al.
  • Scientific reports‎
  • 2021‎

Small intestinal neuroendocrine tumors (SI-NETs) are slow-growing tumors that seem genetically quite stable without highly recurrent mutations, but are epigenetically dysregulated. In contrast to the undetectable expression of the enhancer of zeste homolog 2 (EZH2) histone methyltransferase in the enterochromaffin cells of the small intestine, we found high and differential expression of EZH2 in primary SI-NETs and corresponding metastases. Silencing EZH2 in the SI-NET cell line CNDT2.5 reduced cell proliferation and induced apoptosis. Furthermore, EZH2 knockout inhibited tumor progression in a CNDT2.5 SI-NET xenograft mouse model, and treatment of SI-NET cell lines CNDT2.5 and GOT1 with the EZH2-specific inhibitor CPI-1205 decreased cell viability and promoted apoptosis. Moreover, CPI-1205 treatment reduced migration capacity of CNDT2.5 cells. The EZH2 inhibitor GSK126 also repressed proliferation of CNDT2.5 cells. Recently, metformin has received wide attention as a therapeutic option in diverse cancers. In CNDT2.5 and GOT1 cells, metformin suppressed EZH2 expression, and inhibited cell proliferation. Exposure of GOT1 three-dimensional cell spheroids to CPI-1205 or metformin arrested cell proliferation and decreased spheroid size. These novel findings support a possible role of EZH2 as a candidate oncogene in SI-NETs, and suggest that CPI-1205 and metformin should be further evaluated as therapeutic options for patients with SI-NETs.


Continuous Isotropic-Nematic Transition in Amyloid Fibril Suspensions Driven by Thermophoresis.

  • Daniele Vigolo‎ et al.
  • Scientific reports‎
  • 2017‎

The isotropic and nematic (I + N) coexistence for rod-like colloids is a signature of the first-order thermodynamics nature of this phase transition. However, in the case of amyloid fibrils, the biphasic region is too small to be experimentally detected, due to their extremely high aspect ratio. Herein, we study the thermophoretic behaviour of fluorescently labelled β-lactoglobulin amyloid fibrils by inducing a temperature gradient across a microfluidic channel. We discover that fibrils accumulate towards the hot side of the channel at the temperature range studied, thus presenting a negative Soret coefficient. By exploiting this thermophoretic behaviour, we show that it becomes possible to induce a continuous I-N transition with the I and N phases at the extremities of the channel, starting from an initially single N phase, by generating an appropriate concentration gradient along the width of the microchannel. Accordingly, we introduce a new methodology to control liquid crystal phase transitions in anisotropic colloidal suspensions. Because the induced order-order transitions are achieved under stationary conditions, this may have important implications in both applied colloidal science, such as in separation and fractionation of colloids, as well as in fundamental soft condensed matter, by widening the accessibility of target regions in the phase diagrams.


Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography.

  • Yuxi C Dong‎ et al.
  • Scientific reports‎
  • 2019‎

Computed tomography (CT) is one of the most commonly used clinical imaging modalities. There have recently been many reports of novel contrast agents for CT imaging. In particular, the development of gold nanoparticles (AuNP) as CT contrast agents is a topic of intense interest. AuNP have favorable characteristics for this application such as high payloads of contrast generating material, strong X-ray attenuation, excellent biocompatibility, tailorable surface chemistry, and tunable sizes and shapes. However, there have been conflicting reports on the role of AuNP size on their contrast generation for CT. We therefore sought to extensively investigate the AuNP size-CT contrast relationship. In order to do this, we synthesized AuNP with sizes ranging from 4 to 152 nm and capped them with 5 kDa m-PEG. The contrast generation of AuNP of different sizes was investigated with three clinical CT, a spectral photon counting CT (SPCCT) and two micro CT systems. X-ray attenuation was quantified as attenuation rate in Hounsfield units per unit concentration (HU/mM). No statistically significant difference in CT contrast generation was found among different AuNP sizes via phantom imaging with any of the systems tested. Furthermore, in vivo imaging was performed in mice to provide insight into the effect of AuNP size on animal biodistribution at CT dose levels, which has not previously been explored. Both in vivo imaging and ex vivo analysis with inductively coupled plasma optical emission spectroscopy (ICP-OES) indicated that AuNP that are 15 nm or smaller have long blood circulation times, while larger AuNP accumulated in the liver and spleen more rapidly. Therefore, while we observed no AuNP size effect on CT contrast generation, there is a significant effect of size on AuNP diagnostic utility.


Structural features in common of HBV and HIV-1 resistance against chirally-distinct nucleoside analogues entecavir and lamivudine.

  • Yoshiaki Yasutake‎ et al.
  • Scientific reports‎
  • 2020‎

Chronic hepatitis B virus (HBV) infection is a major public health problem that affects millions of people worldwide. Nucleoside analogue reverse transcriptase (RT) inhibitors, such as entecavir (ETV) and lamivudine (3TC), serve as crucial anti-HBV drugs. However, structural studies of HBV RT have been hampered due to its unexpectedly poor solubility. Here, we show that human immunodeficiency virus type-1 (HIV-1) with HBV-associated amino acid substitutions Y115F/F116Y/Q151M in its RT (HIVY115F/F116Y/Q151M) is highly susceptible to ETV and 3TC. Additionally, we experimentally simulated previously reported ETV/3TC resistance for HBV using HIVY115F/F116Y/Q151M with F160M/M184V (L180M/M204V in HBV RT) substituted. We determined crystal structures for HIV-1 RTY115F/F116Y/Q151M:DNA complexed with 3TC-triphosphate (3TC-TP)/ETV-triphosphate (ETV-TP)/dCTP/dGTP. These structures revealed an atypically tight binding conformation of 3TC-TP, where the Met184 side-chain is pushed away by the oxathiolane of 3TC-TP and exocyclic methylene of ETV-TP. Structural analysis of RTY115F/F116Y/Q151M/F160M/M184V:DNA:3TC-TP also demonstrated that the loosely bound 3TC-TP is misaligned at the active site to prevent a steric clash with the side chain γ-methyl of Val184. These findings shed light on the common structural mechanism of HBV and HIV-1 resistance to 3TC and ETV and should aid in the design of new agents to overcome drug resistance to 3TC and ETV.


Identification of adeno-associated virus variants for gene transfer into human neural cell types by parallel capsid screening.

  • Lea Jessica Flitsch‎ et al.
  • Scientific reports‎
  • 2022‎

Human brain cells generated by in vitro cell programming provide exciting prospects for disease modeling, drug discovery and cell therapy. These applications frequently require efficient and clinically compliant tools for genetic modification of the cells. Recombinant adeno-associated viruses (AAVs) fulfill these prerequisites for a number of reasons, including the availability of a myriad of AAV capsid variants with distinct cell type specificity (also called tropism). Here, we harnessed a customizable parallel screening approach to assess a panel of natural or synthetic AAV capsid variants for their efficacy in lineage-related human neural cell types. We identified common lead candidates suited for the transduction of directly converted, early-stage induced neural stem cells (iNSCs), induced pluripotent stem cell (iPSC)-derived later-stage, radial glia-like neural progenitors, as well as differentiated astrocytic and mixed neuroglial cultures. We then selected a subset of these candidates for functional validation in iNSCs and iPSC-derived astrocytes, using shRNA-induced downregulation of the citrate transporter SLC25A1 and overexpression of the transcription factor NGN2 for proofs-of-concept. Our study provides a comparative overview of the susceptibility of different human cell programming-derived brain cell types to AAV transduction and a critical discussion of the assets and limitations of this specific AAV capsid screening approach.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: