Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Nuclear export of OLIG2 in neural stem cells is essential for ciliary neurotrophic factor-induced astrocyte differentiation.

  • Takao Setoguchi‎ et al.
  • The Journal of cell biology‎
  • 2004‎

Neural stem cell (NSC) differentiation is precisely controlled by a network of transcription factors, which themselves are regulated by extracellular signals (Bertrand, N., D.S. Castro, and F. Guillemot, 2002. Nat. Rev. Neurosci 3:517-530; Shirasaki, R. and S.L. Pfaff, 2002. Annu. Rev. Neurosci 25:251-281). One way that the activity of such transcription factors is controlled is by the regulation of their movement between the cytosol and nucleus (Vandromme, M., C. Gauthier-Rouviere, N. Lamb, and A. Fernandez, 1996. Trends Biochem.Sci. 21:59-64; Lei, E.P. and P.A. Silver, 2002. Dev. Cell 2:261-272). Here we show that the basic helix-loop-helix transcription factor OLIG2, which has been shown to be required for motor neuron and oligodendrocyte development, is found in the cytoplasm, but not the nucleus, of astrocytes in culture and of a subset of astrocytes in the subventricular zone. We demonstrate that the accumulation of OLIG2 in the nucleus of NSCs blocks the CNTF-induced astrocyte differentiation and that the translocation of OLIG2 to the cytoplasm is promoted by activated AKT. We propose that the AKT-stimulated export of OLIG2 from the nucleus of NSCs is essential for the astrocyte differentiation.


Cytokine-induced nuclear factor kappa B activation promotes the survival of developing neurons.

  • G Middleton‎ et al.
  • The Journal of cell biology‎
  • 2000‎

Ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), and interleukin 6 (IL-6) comprise a group of structurally related cytokines that promote the survival of subsets of neurons in the developing peripheral nervous system, but the signaling pathways activated by these cytokines that prevent neuronal apoptosis are unclear. Here, we show that these cytokines activate NF-kappaB in cytokine-dependent developing sensory neurons. Preventing NF-kappaB activation with a super-repressor IkappaB-alpha protein markedly reduces the number of neurons that survive in the presence of cytokines, but has no effect on the survival response of the same neurons to brain-derived neurotrophic factors (BDNF), an unrelated neurotrophic factor that binds to a different class of receptors. Cytokine-dependent sensory neurons cultured from embryos that lack p65, a transcriptionally active subunit of NF-kappaB, have a markedly impaired ability to survive in response to cytokines, but respond normally to BDNF. There is increased apoptosis of cytokine- dependent neurons in p65(-/)- embryos in vivo, resulting in a reduction in the total number of these neurons compared with their numbers in wild-type embryos. These results demonstrate that NF-kappaB plays a key role in mediating the survival response of developing neurons to cytokines.


Local axonal function of STAT3 rescues axon degeneration in the pmn model of motoneuron disease.

  • Bhuvaneish Thangaraj Selvaraj‎ et al.
  • The Journal of cell biology‎
  • 2012‎

Axonal maintenance, plasticity, and regeneration are influenced by signals from neighboring cells, in particular Schwann cells of the peripheral nervous system. Schwann cells produce neurotrophic factors, but the mechanisms by which ciliary neurotrophic factor (CNTF) and other neurotrophic molecules modify the axonal cytoskeleton are not well understood. In this paper, we show that activated signal transducer and activator of transcription-3 (STAT3), an intracellular mediator of the effects of CNTF and other neurotrophic cytokines, acts locally in axons of motoneurons to modify the tubulin cytoskeleton. Specifically, we show that activated STAT3 interacted with stathmin and inhibited its microtubule-destabilizing activity. Thus, ectopic CNTF-mediated activation of STAT3 restored axon elongation and maintenance in motoneurons from progressive motor neuronopathy mutant mice, a mouse model of motoneuron disease. This mechanism could also be relevant for other neurodegenerative diseases and provide a target for new therapies for axonal degeneration.


TGFbeta induces GDNF responsiveness in neurons by recruitment of GFRalpha1 to the plasma membrane.

  • H Peterziel‎ et al.
  • The Journal of cell biology‎
  • 2002‎

We have previously shown that the neurotrophic effect of glial cell line-derived neurotrophic factor (GDNF) in vitro and in vivo requires the presence of transforming growth factor (TGF)beta. Using primary neurons (chick E8 ciliary) we show that the combination of GDNF plus TGFbeta promotes survival, whereas the single factors do not. This cooperative effect is inhibited by blocking the extracellular signal-regulated kinase (ERK)/MAPK pathway, but not by interfering with the PI3 kinase signaling cascade. Although there is no functional GDNF signaling in the absence of TGFbeta, pretreatment with TGFbeta confers GDNF responsiveness to the cells. This is not due to upregulation of GDNF receptors mRNA and protein, but to TGFbeta-induced recruitment of the glycosyl-phosphatidylinositol-anchored GDNF receptor (GFR)alpha1 to the plasma membrane. This is supported by the fact that GDNF in the presence of a soluble GFRalpha1 can promote survival in the absence of TGFbeta. Our data suggest that TGFbeta is involved in GFRalpha1 membrane translocation, thereby permitting GDNF signaling and neurotrophic effects.


Conditional gene ablation of Stat3 reveals differential signaling requirements for survival of motoneurons during development and after nerve injury in the adult.

  • Ulrich Schweizer‎ et al.
  • The Journal of cell biology‎
  • 2002‎

Members of the ciliary neurotrophic factor (CNTF)/leukemia inhibitory factor (LIF)/cardiotrophin gene family are potent survival factors for embryonic and lesioned motoneurons. These factors act via receptor complexes involving gp130 and LIFR-beta and ligand binding leads to activation of various signaling pathways, including phosphorylation of Stat3. The role of Stat3 in neuronal survival was investigated in mice by Cre-mediated gene ablation in motoneurons. Cre is expressed under the neurofilament light chain (NF-L) promoter, starting around E12 when these neurons become dependent on neurotrophic support. Loss of motoneurons during the embryonic period of naturally occurring cell death is not enhanced in NF-L-Cre; Stat3(flox/KO) mice although motoneurons isolated from these mice need higher concentrations of CNTF for maximal survival in culture. In contrast, motoneuron survival is significantly reduced after facial nerve lesion in the adult. These neurons, however, can be rescued by the addition of neurotrophic factors, including CNTF. Stat3 is essential for upregulation of Reg-2 and Bcl-xl expression in lesioned motoneurons. Our data show that Stat3 activation plays an essential role for motoneuron survival after nerve lesion in postnatal life but not during embryonic development, indicating that signaling requirements for motoneuron survival change during maturation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: