2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Development of a Novel In Vitro Model to Study Lymphatic Uptake of Drugs via Artificial Chylomicrons.

  • Malaz Yousef‎ et al.
  • Pharmaceutics‎
  • 2023‎

The lymphatic system plays a crucial role in the absorption of lipophilic drugs, making it an important route for drug delivery. In this study, an in vitro model using Intralipid® was developed to investigate the lymphatic uptake of drugs. The model was validated using cannabidiol, halofantrine, quercetin, and rifampicin. Remarkably, the uptake of these drugs closely mirrored what would transpire in vivo. Furthermore, adding peanut oil to the model system significantly increased the lymphatic uptake of rifampicin, consistent with meals containing fat stimulating lymphatic drug uptake. Conversely, the inclusion of pluronic L-81 was observed to inhibit the lymphatic uptake of rifampicin in the model. This in vitro model emerges as a valuable tool for investigating and predicting drug uptake via the lymphatic system. It marks the first phase in developing a physiologically based predictive tool that can be refined further to enhance the precision of drug interaction predictions with chylomicrons and their subsequent transport via the lymphatic system. Moreover, it can be employed to explore innovative drug formulations and excipients that either enhance or hinder lymphatic drug uptake. The insights gained from this study have significant implications for advancing drug delivery through the lymphatic system.


Pharmacokinetic and Toxicodynamic Characterization of a Novel Doxorubicin Derivative.

  • Samaa Alrushaid‎ et al.
  • Pharmaceutics‎
  • 2017‎

Doxorubicin (Dox) is an effective anti-cancer medication with poor oral bioavailability and systemic toxicities. DoxQ was developed by conjugating Dox to the lymphatically absorbed antioxidant quercetin to improve Dox's bioavailability and tolerability. The purpose of this study was to characterize the pharmacokinetics and safety of Dox after intravenous (IV) and oral (PO) administration of DoxQ or Dox (10 mg/kg) and investigate the intestinal lymphatic delivery of Dox after PO DoxQ administration in male Sprague-Dawley rats. Drug concentrations in serum, urine, and lymph were quantified by HPLC with fluorescence detection. DoxQ intact IV showed a 5-fold increase in the area under the curve (AUC)-18.6 ± 1.98 compared to 3.97 ± 0.71 μg * h/mL after Dox-and a significant reduction in the volume of distribution (Vss): 0.138 ± 0.015 versus 6.35 ± 1.06 L/kg. The fraction excreted unchanged in urine (fe) of IV DoxQ and Dox was ~5% and ~11%, respectively. Cumulative amounts of Dox in the mesenteric lymph fluid after oral DoxQ were twice as high as Dox in a mesenteric lymph duct cannulation rat model. Oral DoxQ increased AUC of Dox by ~1.5-fold compared to after oral Dox. Concentrations of β-N-Acetylglucosaminidase (NAG) but not cardiac troponin (cTnI) were lower after IV DoxQ than Dox. DoxQ altered the pharmacokinetic disposition of Dox, improved its renal safety and oral bioavailability, and is in part transported through intestinal lymphatics.


Inclusion of a Phytomedicinal Flavonoid in Biocompatible Surface-Modified Chylomicron Mimic Nanovesicles with Improved Oral Bioavailability and Virucidal Activity: Molecular Modeling and Pharmacodynamic Studies.

  • Mohamed Y Zakaria‎ et al.
  • Pharmaceutics‎
  • 2022‎

Morin hydrate (MH) is a widely-used Asian phytomedicinal flavonoid with a wide range of reported therapeutic activities. However, MH has limited oral bioavailability due to its low aqueous solubility and intestinal permeability, which in turn hinders its potential antiviral activity. The study reported herein was designed to encapsulate MH in polyethyleneglycolated (PEGylated) chylomicrons (PCMs) and to boost its antiviral activity and biological availability for oral administration using a rat experimental model. The PEGylated edge activator combined with the conventional components of chylomicrons (CMs) amplify the transport of the drug across the intestine and its circulation period, hence its therapeutic impact. The implementation of variables in the in vitro characterization of the vesicles was investigated. Using Design Expert® software, a 24 factorial design was conducted, and the resulting PCM formulations were fabricated utilizing a thin-film hydration technique. The efficacy of the formulations was assessed according to their zeta potential (ZP), entrapment efficiency percentage (EE%), amount of drug released after 8 h (Q8h), and particle size (PS) data. Formulation F9, which was deemed to be the optimal formula, used compritol as the lipidic core together in defined amounts with phosphatidylcholine (PC) and Brij52. Computer-aided studies revealed that MH alone in a suspension had both diminished intestinal permeability and absorption, but was enhanced when loaded in PCMs. This was affirmed by the superiority of formulation F9 results in ex vivo permeation and pharmacokinetic studies. Furthermore, formulation F9 had a superior safety profile and antiviral activity over a pure MH suspension. Molecular-docking studies revealed the capability of MH to inhibit MERS-CoV 3CLpro, the enzyme shown to exhibit a crucial role in viral replication. Additionally, F9 suppressed both MERS-CoV-induced histopathological alteration in lung tissue and resulting oxidative and inflammatory biomarkers. Collectively, the results reported herein affirmed the potential of PCMs as nanocarriers for the effective oral administration of MH as an antiviral.


Transmucosal Solid Lipid Nanoparticles to Improve Genistein Absorption via Intestinal Lymphatic Transport.

  • Antonella Obinu‎ et al.
  • Pharmaceutics‎
  • 2021‎

Genistein (GEN) is a soy-derived isoflavone that exhibits several biological effects, such as neuroprotective activity and the prevention of several types of cancer and cardiovascular disease. However, due to its poor water solubility and the extensive first-pass metabolism, the oral bioavailability of GEN is limited. In this work, solid lipid nanoparticles (SLN) were developed to preferentially reach the intestinal lymphatic vessels, avoiding the first-pass metabolism of GEN. GEN-loaded SLN were obtained by a hot homogenization process, and the formulation parameters were chosen based on already formulated studies. The nanoparticles were characterized, and the preliminary in vitro chylomicron formation was evaluated. The cell uptake of selected nanocarriers was studied on the Caco-2 cell line and intestinal mucosa. The SLN, characterized by a spherical shape, showed an average diameter (about 280 nm) suitable for an intestinal lymphatic uptake, good stability during the testing time, and high drug loading capacity. Furthermore, the intestinal mucosa and Caco-2 cells were found to uptake SLN. The approximately two-fold increase in particle size suggested a possible interaction between SLN and the lipid components of chylomicrons like phospholipid; therefore, the results may support the potential for these SLN to improve oral GEN bioavailability via intestinal lymphatic absorption.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: