Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Genome-Wide Analysis of the Catharanthus roseus RLK1-Like in Soybean and GmCrRLK1L20 Responds to Drought and Salt Stresses.

  • Zhi-Qi Wang‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Abiotic stresses, such as drought and salinity, severely affects the growth, development and productivity of the plants. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase family is involved in several processes in the plant life cycle. However, there have been few studies addressing the functions of CrRLK1L proteins in soybean. In this study, 38 CrRLK1L genes were identified in the soybean genome (Glycine max Wm82.a2.v1). Phylogenetic analysis demonstrated that soybean CrRLK1L genes were grouped into clusters, cluster I, II, III. The chromosomal mapping demonstrated that 38 CrRLK1L genes were located in 14 of 20 soybean chromosomes. None were discovered on chromosomes 1, 4, 6, 7, 11, and 14. Gene structure analysis indicated that 73.6% soybean CrRLK1L genes were characterized by a lack of introns.15.7% soybean CrRLK1L genes only had one intron and 10.5% soybean CrRLK1L genes had more than one intron. Five genes were obtained from soybean drought- and salt-induced transcriptome databases and were found to be highly up-regulated. GmCrRLK1L20 was notably up-regulated under drought and salinity stresses, and was therefore studied further. Subcellular localization analysis revealed that the GmCrRLK1L20 protein was located in the cell membrane. The overexpression of the GmCrRLK1L20 gene in soybean hairy roots improved both drought tolerance and salt stresses and enhanced the expression of the stress-responsive genes GmMYB84, GmWRKY40, GmDREB-like, GmGST15, GmNAC29, and GmbZIP78. These results indicated that GmCrRLK1L20 could play a vital role in defending against drought and salinity stresses in soybean.


The Roles of GmERF135 in Improving Salt Tolerance and Decreasing ABA Sensitivity in Soybean.

  • Meng-Jie Zhao‎ et al.
  • Frontiers in plant science‎
  • 2019‎

Abscisic acid (ABA) mediates various abiotic stress responses, and ethylene responsive factors (ERFs) play vital role in resisting stresses, but the interaction of these molecular mechanisms remains elusive. In this study, we identified an ABA-induced soybean ERF gene GmERF135 that was highly up-regulated by ethylene (ET), drought, salt, and low temperature treatments. Subcellular localization assay showed that the GmERF135 protein was targeted to the nucleus. Promoter cis-acting elements analysis suggested that numerous potential stress responsive cis-elements were distributed in the promoter region of GmERF135, including ABA-, light-, ET-, gibberellin (GA)-, and methyl jasmonate (MeJA)-responsive elements. Overexpression of GmERF135 in Arabidopsis enhanced tolerance to drought and salt conditions. In addition, GmERF135 promoted the growth of transgenic hairy roots under salt and exogenous ABA conditions. These results suggest that soybean GmERF135 may participate in both ABA and ET signaling pathways to regulate the responses to multiple stresses.


The Soybean bZIP Transcription Factor Gene GmbZIP2 Confers Drought and Salt Resistances in Transgenic Plants.

  • Yan Yang‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Abiotic stresses, such as drought and salt, are major environmental stresses, affecting plant growth and crop productivity. Plant bZIP transcription factors (bZIPs) confer stress resistances in harsh environments and play important roles in each phase of plant growth processes. In this research, 15 soybean bZIP family members were identified from drought-induced de novo transcriptomic sequences of soybean, which were unevenly distributed across 12 soybean chromosomes. Promoter analysis showed that these 15 genes were rich in ABRE, MYB and MYC cis-acting elements which were reported to be involved in abiotic stress responses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that 15 GmbZIP genes could be induced by drought and salt stress. GmbZIP2 was significantly upregulated under stress conditions and thus was selected for further study. Subcellular localization analysis revealed that the GmbZIP2 protein was located in the cell nucleus. qRT-PCR results show that GmbZIP2 can be induced by multiple stresses. The overexpression of GmbZIP2 in Arabidopsis and soybean hairy roots could improve plant resistance to drought and salt stresses. The result of differential expression gene analysis shows that the overexpression of GmbZIP2 in soybean hairy roots could enhance the expression of the stress responsive genes GmMYB48, GmWD40, GmDHN15, GmGST1 and GmLEA. These results indicate that soybean bZIPs played pivotal roles in plant resistance to abiotic stresses.


Genome-Wide Analysis of the RAV Family in Soybean and Functional Identification of GmRAV-03 Involvement in Salt and Drought Stresses and Exogenous ABA Treatment.

  • Shu-Ping Zhao‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Transcription factors play vital roles in plant growth and in plant responses to abiotic stresses. The RAV transcription factors contain a B3 DNA binding domain and/or an APETALA2 (AP2) DNA binding domain. Although genome-wide analyses of RAV family genes have been performed in several species, little is known about the family in soybean (Glycine max L.). In this study, a total of 13 RAV genes, named as GmRAVs, were identified in the soybean genome. We predicted and analyzed the amino acid compositions, phylogenetic relationships, and folding states of conserved domain sequences of soybean RAV transcription factors. These soybean RAV transcription factors were phylogenetically clustered into three classes based on their amino acid sequences. Subcellular localization analysis revealed that the soybean RAV proteins were located in the nucleus. The expression patterns of 13 RAV genes were analyzed by quantitative real-time PCR. Under drought stresses, the RAV genes expressed diversely, up- or down-regulated. Following NaCl treatments, all RAV genes were down-regulated excepting GmRAV-03 which was up-regulated. Under abscisic acid (ABA) treatment, the expression of all of the soybean RAV genes increased dramatically. These results suggested that the soybean RAV genes may be involved in diverse signaling pathways and may be responsive to abiotic stresses and exogenous ABA. Further analysis indicated that GmRAV-03 could increase the transgenic lines resistance to high salt and drought and result in the transgenic plants insensitive to exogenous ABA. This present study provides valuable information for understanding the classification and putative functions of the RAV transcription factors in soybean.


Genome-Wide Analysis of the C2 Domain Family in Soybean and Identification of a Putative Abiotic Stress Response Gene GmC2-148.

  • Yue Sun‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Plant C2 domain proteins play essential biological functions in numerous plants. In this study, 180 soybean C2 domain genes were identified by screening. Phylogenetic relationship analysis revealed that C2 domain genes fell into three distinct groups with diverged gene structure and conserved functional domain. Chromosomal location analysis indicated that C2 domain genes mapped to 20 chromosomes. The transcript profiles based on RNA-seq data showed that GmC2-58, GmC2-88, and GmC2-148 had higher levels of expression under salt, drought, and abscisic acid (ABA) treatments. GmC2-148, encoding a cell membrane-localized protein, had the highest level of response to various treatments according to real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Under salt and drought stresses, the soybean plants with GmC2-148 transgenic hairy roots showed delayed leaf rolling, a higher content of proline (Pro), and lower contents of H2O2, O2- and malondialdehyde (MDA) compared to those of the empty vector (EV) plants. The results of transgenic Arabidopsis in salt and drought treatments were consistent with those in soybean treatments. In addition, the soybean plants with GmC2-148 transgenic hairy roots increased transcript levels of several abiotic stress-related marker genes, including COR47, NCDE3, NAC11, WRKY13, DREB2A, MYB84, bZIP44, and KIN1 which resulted in enhanced abiotic stress tolerance in soybean. These results indicate that C2 domain genes are involved in response to salt and drought stresses, and this study provides a genome-wide analysis of the C2 domain family in soybean.


Expression Analyses of Soybean VOZ Transcription Factors and the Role of GmVOZ1G in Drought and Salt Stress Tolerance.

  • Bo Li‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


Genome-Wide Analysis of MADS-Box Genes in Foxtail Millet (Setaria italica L.) and Functional Assessment of the Role of SiMADS51 in the Drought Stress Response.

  • Wan Zhao‎ et al.
  • Frontiers in plant science‎
  • 2021‎

MADS-box transcription factors play vital roles in multiple biological processes in plants. At present, a comprehensive investigation into the genome-wide identification and classification of MADS-box genes in foxtail millet (Setaria italica L.) has not been reported. In this study, we identified 72 MADS-box genes in the foxtail millet genome and give an overview of the phylogeny, chromosomal location, gene structures, and potential functions of the proteins encoded by these genes. We also found that the expression of 10 MIKC-type MADS-box genes was induced by abiotic stresses (PEG-6000 and NaCl) and exogenous hormones (ABA and GA), which suggests that these genes may play important regulatory roles in response to different stresses. Further studies showed that transgenic Arabidopsis and rice (Oryza sativa L.) plants overexpressing SiMADS51 had reduced drought stress tolerance as revealed by lower survival rates and poorer growth performance under drought stress conditions, which demonstrated that SiMADS51 is a negative regulator of drought stress tolerance in plants. Moreover, expression of some stress-related genes were down-regulated in the SiMADS51-overexpressing plants. The results of our study provide an overall picture of the MADS-box gene family in foxtail millet and establish a foundation for further research on the mechanisms of action of MADS-box proteins with respect to abiotic stresses.


Genome-Wide Analysis of CDPK Family in Foxtail Millet and Determination of SiCDPK24 Functions in Drought Stress.

  • Tai-Fei Yu‎ et al.
  • Frontiers in plant science‎
  • 2018‎

Plant calcium-dependent protein kinases (CDPKs) were reported to play important roles in plant resistance to abiotic stress. Foxtail millet cultivation "H138" was used for RNA-seq analysis. The data from drought-induced de novo transcriptomic sequences of foxtail millet showed that CDPKs were up- or down-regulated by drought to different degrees. In this study, 29 foxtail millet CDPKs were classified into four subgroups. These genes were unevenly distributed on nine foxtail millet chromosomes, and chromosomes 2, 3, and 9 contained the most SiCDPK members. Analysis of putative cis-acting elements showed that most foxtail millet CDPK genes contained the ABRE, LTR, HSE, MYB, MYC, DRE, CGTCA-motif, and TGACG-motif cis-acting elements, which could be activated by abiotic stresses. Real-time PCR analysis indicated that 29 SiCDPK genes experienced different degrees of induction under drought and ABA stresses. SiCDPK24 had the highest expression levels at 6 and 12 h of drought treatment and was chosen for further analysis. SiCDPK24 localized to the cell membrane and the nucleus of Arabidopsis mesophyll protoplasts. Western blot analysis showed that SiCDPK24 protein had autophosphorylation activity. Overexpression of SiCDPK24 in Arabidopsis enhanced drought resistance and improved the survival rate under drought stress. It also activated the expressions of nine stress-related genes, namely RD29A, RD29B, RD22, KIN1, COR15, COR47, LEA14, CBF3/DREB1A, and DREB2A. These genes are involved in resistance to abiotic stresses in Arabidopsis. These results indicate that foxtail millet CDPK genes play important roles in resisting drought stress.


Genomic Analysis of Stress Associated Proteins in Soybean and the Role of GmSAP16 in Abiotic Stress Responses in Arabidopsis and Soybean.

  • Xiang-Zhan Zhang‎ et al.
  • Frontiers in plant science‎
  • 2019‎

Stress associated proteins (SAPs) containing A20/AN1 zinc finger domains have emerged as novel regulators of stress responses. In this study, 27 SAP genes were identified in soybean. The phylogenetic relationships, exon-intron structure, domain structure, chromosomal localization, putative cis-acting elements, and expression patterns of SAPs in various tissues under abiotic stresses were analyzed. Among the soybean SAP genes, GmSAP16 was significantly induced by water deficit stress, salt, and abscisic acid (ABA) and selected for further analysis. GmSAP16 was located in the nucleus and cytoplasm. The overexpression of GmSAP16 in Arabidopsis improved drought and salt tolerance at different developmental stages and increased ABA sensitivity, as indicated by delayed seed germination and stomatal closure. The GmSAP16 transgenic Arabidopsis plants had a higher proline content and a lower water loss rate and malondialdehyde (MDA) content than wild type (WT) plants in response to stresses. The overexpression of GmSAP16 in soybean hairy roots enhanced drought and salt tolerance of soybean seedlings, with higher proline and chlorophyll contents and a lower MDA content than WT. RNA inference (RNAi) of GmSAP16 increased stress sensitivity. Stress-related genes, including GmDREB1B;1, GmNCED3, GmRD22, GmDREB2, GmNHX1, and GmSOS1, showed significant expression alterations in GmSAP16-overexpressing and RNAi plants under stress treatments. These results indicate that soybean SAP genes play important roles in abiotic stress responses.


The WRKY Transcription Factor GmWRKY12 Confers Drought and Salt Tolerance in Soybean.

  • Wen-Yan Shi‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

WRKYs are important regulators in plant development and stress responses. However, knowledge of this superfamily in soybean is limited. In this study, we characterized the drought- and salt-induced gene GmWRKY12 based on RNA-Seq and qRT-PCR. GmWRKY12, which is 714 bp in length, encoded 237 amino acids and grouped into WRKY II. The promoter region of GmWRKY12 included ABER4, MYB, MYC, GT-1, W-box and DPBF cis-elements, which possibly participate in abscisic acid (ABA), drought and salt stress responses. GmWRKY12 was minimally expressed in different tissues under normal conditions but highly expressed under drought and salt treatments. As a nucleus protein, GmWRKY12 was responsive to drought, salt, ABA and salicylic acid (SA) stresses. Using a transgenic hairy root assay, we further characterized the roles of GmWRKY12 in abiotic stress tolerance. Compared with control (Williams 82), overexpression of GmWRKY12 enhanced drought and salt tolerance, increased proline (Pro) content and decreased malondialdehyde (MDA) content under drought and salt treatment in transgenic soybean seedlings. These results may provide a basis to understand the functions of GmWRKY12 in abiotic stress responses in soybean.


The Elongation Factor GmEF4 Is Involved in the Response to Drought and Salt Tolerance in Soybean.

  • Yuan Gao‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Growing evidence indicates that elongation factor 1α (EF1α) is involved in responses to various abiotic stresses in several plant species. Soybean EF1α proteins include three structural domains: one GTP-binding domain and two oligonucleotide binding domains that are also called as domain 2 and domain 3. In this study, 10 EF1α genes were identified in the soybean genome. We predicted structures of different domains and analyzed gene locations, gene structures, phylogenetic relationships, various cis-elements, and conserved domains of soybean EF1αs. The expression patterns of 10 EF1α genes were analyzed by quantitative real-time PCR (qRT-PCR). Under drought stress, soybean EF1α genes were upregulated in varying degrees. In particular, GmEF4 was upregulated under drought and salt treatments. Compared to the drought- and salt-treated empty vector (EV)-control plants, drought- and salt-treated GmEF4-overexpressing (OE) plants had significantly delayed leaf wilting, longer root, higher biomass, higher proline (Pro) content, and lower H2O2, O2-, and malondialdehyde (MDA) contents. Thus, this study provides a foundation for further functional genomics research about this important family under abiotic stress.


Functional Analysis of the Soybean GmCDPK3 Gene Responding to Drought and Salt Stresses.

  • Dan Wang‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Plants have a series of response mechanisms to adapt when they are subjected to external stress. Calcium-dependent protein kinases (CDPKs) in plants function against a variety of abiotic stresses. We screened 17 CDPKs from drought- and salt-induced soybean transcriptome sequences. The phylogenetic tree divided CDPKs of rice, Arabidopsis and soybean into five groups (I-V). Cis-acting element analysis showed that the 17 CDPKs contained some elements associated with drought and salt stresses. Quantitative real-time PCR (qRT-PCR) analysis indicated that the 17 CDPKs were responsive after different degrees of induction under drought and salt stresses. GmCDPK3 was selected as a further research target due to its high relative expression. The subcellular localization experiment showed that GmCDPK3 was located on the membrane of Arabidopsis mesophyll protoplasts. Overexpression of GmCDPK3 improved drought and salt resistance in Arabidopsis. In the soybean hairy roots experiment, the leaves of GmCDPK3 hairy roots with RNA interference (GmCDPK3-RNAi) soybean lines were more wilted than those of GmCDPK3 overexpression (GmCDPK3-OE) soybean lines after drought and salt stresses. The trypan blue staining experiment further confirmed that cell membrane damage of GmCDPK3-RNAi soybean leaves was more severe than in GmCDPK3-OE soybean lines. In addition, proline (Pro) and chlorophyll contents were increased and malondialdehyde (MDA) content was decreased in GmCDPK3-OE soybean lines. On the contrary, GmCDPK3-RNAi soybean lines had decreased Pro and chlorophyll content and increased MDA. The results indicate that GmCDPK3 is essential in resisting drought and salt stresses.


Genome-Wide Analysis of the GRAS Gene Family and Functional Identification of GmGRAS37 in Drought and Salt Tolerance.

  • Ting-Ting Wang‎ et al.
  • Frontiers in plant science‎
  • 2020‎

GRAS genes, which form a plant-specific transcription factor family, play an important role in plant growth and development and stress responses. However, the functions of GRAS genes in soybean (Glycine max) remain largely unknown. Here, 117 GRAS genes distributed on 20 chromosomes were identified in the soybean genome and were classified into 11 subfamilies. Of the soybean GRAS genes, 80.34% did not have intron insertions, and 54 pairs of genes accounted for 88.52% of duplication events (61 pairs). RNA-seq analysis demonstrated that most GmGRASs were expressed in 14 different soybean tissues examined and responded to multiple abiotic stresses. Results from quantitative real-time PCR analysis of six selected GmGRASs suggested that GmGRAS37 was significantly upregulated under drought and salt stress conditions and abscisic acid and brassinosteroid treatment; therefore, this gene was selected for further study. Subcellular localization analysis revealed that the GmGRAS37 protein was located in the plasma membrane, nucleus, and cytosol. Soybean hairy roots overexpressing GmGRAS37 had improved resistance to drought and salt stresses. In addition, these roots showed increased transcript levels of several drought- and salt-related genes. The results of this study provide the basis for comprehensive analysis of GRAS genes and insight into the abiotic stress response mechanism in soybean.


Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses.

  • Qian Yu‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Calmodulin-binding protein 60 (CBP60) members constitute a plant-specific protein family that plays an important role in plant growth and development. In the soybean genome, nineteen CBP60 members were identified and analyzed for their corresponding sequences and structures to explore their functions. Among GmCBP60A-1, which primarily locates in the cytomembrane, was significantly induced by drought and salt stresses. The overexpression of GmCBP60A-1 enhanced drought and salt tolerance in Arabidopsis, which showed better state in the germination of seeds and the root growth of seedlings. In the soybean hairy roots experiment, the overexpression of GmCBP60A-1 increased proline content, lowered water loss rate and malondialdehyde (MDA) content, all of which likely enhanced the drought and salt tolerance of soybean seedlings. Under stress conditions, drought and salt response-related genes showed significant differences in expression in hairy root soybean plants of GmCBP60A-1-overexpressing and hairy root soybean plants of RNAi. The present study identified GmCBP60A-1 as an important gene in response to salt and drought stresses based on the functional analysis of this gene and its potential underlying mechanisms in soybean stress-tolerance.


Genomic-Wide Analysis of the PLC Family and Detection of GmPI-PLC7 Responses to Drought and Salt Stresses in Soybean.

  • Zhi-Feng Chen‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Phospholipase C (PLC) performs significant functions in a variety of biological processes, including plant growth and development. The PLC family of enzymes principally catalyze the hydrolysis of phospholipids in organisms. This exhaustive exploration of soybean GmPLC members using genome databases resulted in the identification of 15 phosphatidylinositol-specific PLC (GmPI-PLC) and 9 phosphatidylcholine-hydrolyzing PLC (GmNPC) genes. Chromosomal location analysis indicated that GmPLC genes mapped to 10 of the 20 soybean chromosomes. Phylogenetic relationship analysis revealed that GmPLC genes distributed into two groups in soybean, the PI-PLC and NPC groups. The expression patterns and tissue expression analysis showed that GmPLCs were differentially expressed in response to abiotic stresses. GmPI-PLC7 was selected to further explore the role of PLC in soybean response to drought and salt stresses by a series of experiments. Compared with the transgenic empty vector (EV) control lines, over-expression of GmPI-PLC7 (OE) conferred higher drought and salt tolerance in soybean, while the GmPI-PLC7-RNAi (RNAi) lines exhibited the opposite phenotypes. Plant tissue staining and physiological parameters observed from drought- and salt-stressed plants showed that stress increased the contents of chlorophyll, oxygen free radical (O2 -), hydrogen peroxide (H2O2) and NADH oxidase (NOX) to amounts higher than those observed in non-stressed plants. This study provides new insights in the functional analysis of GmPLC genes in response to abiotic stresses.


Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses.

  • Pan-Song Li‎ et al.
  • BMC genomics‎
  • 2014‎

High temperature affects organism growth and metabolic activity. Heat shock transcription factors (Hsfs) are key regulators in heat shock response in eukaryotes and prokaryotes. Under high temperature conditions, Hsfs activate heat shock proteins (Hsps) by combining with heat stress elements (HSEs) in their promoters, leading to defense of heat stress. Since the first plant Hsf gene was identified in tomato, several plant Hsf family genes have been thoroughly characterized. Although soybean (Glycine max), an important oilseed crops, genome sequences have been available, the Hsf family genes in soybean have not been characterized accurately.


Genome-Wide Analysis of the DUF4228 Family in Soybean and Functional Identification of GmDUF4228 -70 in Response to Drought and Salt Stresses.

  • Zhi-Xin Leng‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Domain of unknown function 4228 (DUF4228) proteins are a class of proteins widely found in plants, playing an important role in response to abiotic stresses. However, studies on the DUF4228 family in soybean (Glycine max L.) are sparse. In this study, we identified a total of 81 DUF4228 genes in soybean genome, named systematically based on their chromosome distributions. Results showed that these genes were unevenly distributed on the 20 chromosomes of soybean. The predicted soybean DUF4228 proteins were identified in three groups (Groups I-III) based on a maximum likelihood phylogenetic tree. Genetic structure analysis showed that most of the GmDUF4228 genes contained no introns. Expression profiling showed that GmDUF4228 genes were widely expressed in different organs and tissues in soybean. RNA-seq data were used to characterize the expression profiles of GmDUF4228 genes under the treatments of drought and salt stresses, with nine genes showing significant up-regulation under both drought and salt stress further functionally verified by promoter (cis-acting elements) analysis and quantitative real-time PCR (qRT-PCR). Due to its upregulation under drought and salt stresses based on both RNA-seq and qRT-PCR analyses, GmDUF4228-70 was selected for further functional analysis in transgenic plants. Under drought stress, the degree of leaf curling and wilting of the GmDUF4228-70-overexpressing (GmDUF4228-70-OE) line was lower than that of the empty vector (EV) line. GmDUF4228-70-OE lines also showed increased proline content, relative water content (RWC), and chlorophyll content, and decreased contents of malondialdehyde (MDA), H2O2, and O2-. Under salt stress, the changes in phenotypic and physiological indicators of transgenic plants were the same as those under drought stress. In addition, overexpression of the GmDUF4228-70 gene promoted the expression of marker genes under both drought and salt stresses. Taken together, the results indicated that GmDUF4228 genes play important roles in response to abiotic stresses in soybean.


Identification and characterization of GmMYB118 responses to drought and salt stress.

  • Yong-Tao Du‎ et al.
  • BMC plant biology‎
  • 2018‎

Abiotic stress severely influences plant growth and development. MYB transcription factors (TFs), which compose one of the largest TF families, play an important role in abiotic stress responses.


The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean.

  • Meng-Jie Zhao‎ et al.
  • BMC plant biology‎
  • 2019‎

Ethylene-responsive factors (ERFs) play important roles in plant growth and development and the response to adverse environmental factors, including abiotic and biotic stresses.


Genome-Wide Analysis of DEAD-box RNA Helicase Family in Wheat (Triticum aestivum) and Functional Identification of TaDEAD-box57 in Abiotic Stress Responses.

  • Jing-Na Ru‎ et al.
  • Frontiers in plant science‎
  • 2021‎

DEAD-box RNA helicases constitute the largest subfamily of RNA helicase superfamily 2 (SF2), and play crucial roles in plant growth, development, and abiotic stress responses. Wheat is one of the most important cereal crops in worldwide, and abiotic stresses greatly restrict its production. So far, the DEAD-box RNA helicase family has yet to be characterized in wheat. Here, we performed a comprehensive genome-wide analysis of the DEAD-box RNA helicase family in wheat, including phylogenetic relationships, chromosomal distribution, duplication events, and protein motifs. A total of 141 TaDEAD-box genes were identified and found to be unevenly distributed across all 21 chromosomes. Whole genome/segmental duplication was identified as the likely main driving factor for expansion of the TaDEAD-box family. Expression patterns of the 141 TaDEAD-box genes were compared across different tissues and under abiotic stresses to identify genes to be important in growth or stress responses. TaDEAD-box57-3B was significantly up-regulated under multiple abiotic stresses, and was therefore selected for further analysis. TaDEAD-box57-3B was localized to the cytoplasm and plasma membrane. Ectopic expression of TaDEAD-box57-3B in Arabidopsis improved tolerance to drought and salt stress as measured by germination rates, root lengths, fresh weights, and survival rates. Transgenic lines also showed higher levels of proline and chlorophyll and lower levels of malonaldehyde (MDA) than WT plants in response to drought or salt stress. In response to cold stress, the transgenic lines showed significantly better growth and higher survival rates than WT plants. These results indicate that TaDEAD-box57-3B may increase tolerance to drought, salt, and cold stress in transgenic plants through regulating the degree of membrane lipid peroxidation. This study provides new insights for understanding evolution and function in the TaDEAD-box gene family.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: