2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 71 papers

Molecular genetic diagnostic techniques in choroideremia.

  • Mira J B Furgoch‎ et al.
  • Molecular vision‎
  • 2014‎

To optimize and streamline molecular genetics techniques in diagnosing choroideremia (CHM).


Multimodal Imaging of Photoreceptor Structure in Choroideremia.

  • Lynn W Sun‎ et al.
  • PloS one‎
  • 2016‎

Choroideremia is a progressive X-linked recessive dystrophy, characterized by degeneration of the retinal pigment epithelium (RPE), choroid, choriocapillaris, and photoreceptors. We examined photoreceptor structure in a series of subjects with choroideremia with particular attention to areas bordering atrophic lesions.


Novel CHM mutations identified in Chinese families with Choroideremia.

  • Xue-Bi Cai‎ et al.
  • Scientific reports‎
  • 2016‎

Choroideremia is a bilateral and progressive X-linked inherited disease characterized by widespread chorioretinal atrophy with relative sparing of the macular region. It is caused by mutations in the ubiquitously expressed CHM gene, which lead to the absence of the Rab escort protein 1 (REP-1), resulting in prenylation deficiency. Typical fundus appearances for choroideremia were found in 3 probands from three unrelated Chinese families in our study. We firstly used the targeted exome sequencing (TES) technology to detect mutations in CHM gene. Based on an established filtering strategy of data analyses, along with confirmation by co-segregation, a previously reported mutation (c.1584_1587del TGTT, p.V529Hfs*7) was identified in one family, while two novel mutations (c.227_232delinsTGTCATTTCA, p.Q76Lfs*7; c.710dupA, p.Y237_S238delinsX) were identified in the other two families. These findings not only expands the currently limited spectrum of Chinese disease-causing variants in CHM gene, but also increases our understanding of the phenotypic and genotypic correlations of choroideremia, and may potentially lead to improved genetic counseling and specific treatment for families with choroideremia as well.


An In Silica Model for RPE Loss Patterns in Choroideremia.

  • Benjamin K Young‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2021‎

To use empirical data to develop a model of cell loss in choroideremia that predicts the known exponential rate of RPE loss and central, scalloped preservation pattern seen in this disease.


A Comprehensive Analysis of Choroideremia: From Genetic Characterization to Clinical Practice.

  • Rocio Sanchez-Alcudia‎ et al.
  • PloS one‎
  • 2016‎

Choroideremia (CHM) is a rare X-linked disease leading to progressive retinal degeneration resulting in blindness. The disorder is caused by mutations in the CHM gene encoding REP-1 protein, an essential component of the Rab geranylgeranyltransferase (GGTase) complex. In the present study, we evaluated a multi-technique analysis algorithm to describe the mutational spectrum identified in a large cohort of cases and further correlate CHM variants with phenotypic characteristics and biochemical defects of choroideremia patients. Molecular genetic testing led to the characterization of 36 out of 45 unrelated CHM families (80%), allowing the clinical reclassification of four CHM families. Haplotype reconstruction showed independent origins for the recurrent p.Arg293* and p.Lys178Argfs*5 mutations, suggesting the presence of hotspots in CHM, as well as the identification of two different unrelated events involving exon 9 deletion. No certain genotype-phenotype correlation could be established. Furthermore, all the patients´ fibroblasts analyzed presented significantly increased levels of unprenylated Rabs proteins compared to control cells; however, this was not related to the genotype. This research demonstrates the major potential of the algorithm proposed for diagnosis. Our data enhance the importance of establish a differential diagnosis with other retinal dystrophies, supporting the idea of an underestimated prevalence of choroideremia. Moreover, they suggested that the severity of the disorder cannot be exclusively explained by the genotype.


Gene therapy for choroideremia: in vitro rescue mediated by recombinant adenovirus.

  • Vibha Anand‎ et al.
  • Vision research‎
  • 2003‎

Choroideremia (CHM) is an X-linked retinal degenerative disease resulting from a lack of functional Rab Escort Protein-1 (REP-1). As a first step in developing gene-based therapies for this disease, we evaluated the feasibility of delivering functional REP-1 to defective lymphocytes and fibroblasts isolated from individuals with CHM. A recombinant adenovirus delivering the full-length human cDNA encoding REP-1 under the control of a cytomegalovirus promoter was generated. Adenovirus-mediated delivery of REP-1 rescued the defective cells as assessed through protein and enzymatic assays. Ultimately, it may be possible to use virus-mediated delivery of REP-1 to evaluate disease intervention in vivo.


Choroidal Vascularity Features in Patients with Choroideremia and Cystoid Spaces.

  • Claudio Iovino‎ et al.
  • Diagnostics (Basel, Switzerland)‎
  • 2021‎

Cystoid spaces (CSs) are a common retinal finding in choroideremia (CHM) patients. The aim of this study was to analyze the vascular features of the choroid associated with the presence of CSs in patients with confirmed genetic diagnosis of CHM. A total of 33 patients (33 eyes) were enrolled in this retrospective cross-sectional study and divided into two groups based on the presence (17 eyes) or absence (16 eyes) of CSs. Choroidal features were evaluated on spectral-domain optical coherence tomography including subfoveal choroidal thickness (CT), total choroidal area (TCA), luminal choroidal area (LCA), and stromal choroidal area (SCA). The choroidal vascularity index (CVI) was then calculated in all study eyes. All structural choroidal parameters were calculated both on the entire length of the B-scan and in the central subfoveal 1500 μm. The average age was 37.3 ± 11.6 and 31.4 ± 16.7 years (p = 0.25) and mean logMAR best-corrected visual acuity was 0.11 ± 0.20 and 0.20 ± 0.57 (p = 0.54) in the CHM groups with and without CSs, respectively. There were no significant differences in subfoveal CT, and TCA, LCA, SCA, and CVI evaluated on either the entire scan or in the central 1500 μm (all p > 0.05). All choroidal vasculature parameters exhibited no significant differences between CHM eyes with and without CSs. Our results suggest that the choroid may not be involved in the development of CSs in patients with CHM.


AAV-mediated gene therapy for choroideremia: preclinical studies in personalized models.

  • Vidyullatha Vasireddy‎ et al.
  • PloS one‎
  • 2013‎

Choroideremia (CHM) is an X- linked retinal degeneration that is symptomatic in the 1(st) or 2(nd) decade of life causing nyctalopia and loss of peripheral vision. The disease progresses through mid-life, when most patients become blind. CHM is a favorable target for gene augmentation therapy, as the disease is due to loss of function of a protein necessary for retinal cell health, Rab Escort Protein 1 (REP1).The CHM cDNA can be packaged in recombinant adeno-associated virus (rAAV), which has an established track record in human gene therapy studies, and, in addition, there are sensitive and quantitative assays to document REP1 activity. An animal model that accurately reflects the human condition is not available. In this study, we tested the ability to restore REP1 function in personalized in vitro models of CHM: lymphoblasts and induced pluripotent stems cells (iPSCs) from human patients. The initial step of evaluating safety of the treatment was carried out by evaluating for acute retinal histopathologic effects in normal-sighted mice and no obvious toxicity was identified. Delivery of the CHM cDNA to affected cells restores REP1 enzymatic activity and also restores proper protein trafficking. The gene transfer is efficient and the preliminary safety data are encouraging. These studies pave the way for a human clinical trial of gene therapy for CHM.


Chronically shortened rod outer segments accompany photoreceptor cell death in Choroideremia.

  • Ingrid P Meschede‎ et al.
  • PloS one‎
  • 2020‎

X-linked choroideremia (CHM) is a disease characterized by gradual retinal degeneration caused by loss of the Rab Escort Protein, REP1. Despite partial compensation by REP2 the disease is characterized by prenylation defects in multiple members of the Rab protein family that are master regulators of membrane traffic. Remarkably, the eye is the only organ affected in CHM patients, possibly because of the huge membrane traffic burden of the post mitotic photoreceptors, which synthesise outer segments, and the adjacent retinal pigment epithelium that degrades the spent portions each day. In this study, we aimed to identify defects in membrane traffic that might lead to photoreceptor cell death in CHM. In a heterozygous null female mouse model of CHM (Chmnull/WT), degeneration of the photoreceptor layer was clearly evident from increased numbers of TUNEL positive cells compared to age matched controls, small numbers of cells exhibiting signs of mitochondrial stress and greatly increased microglial infiltration. However, most rod photoreceptors exhibited remarkably normal morphology with well-formed outer segments and no discernible accumulation of transport vesicles in the inner segment. The major evidence of membrane trafficking defects was a shortening of rod outer segments that was evident at 2 months of age but remained constant over the period during which the cells die. A decrease in rhodopsin density found in the outer segment may underlie the outer segment shortening but does not lead to rhodopsin accumulation in the inner segment. Our data argue against defects in rhodopsin transport or outer segment renewal as triggers of cell death in CHM.


Correlation Between Fundus Autofluorescence Pattern and Retinal Function on Microperimetry in Choroideremia.

  • Federica E Poli‎ et al.
  • Translational vision science & technology‎
  • 2023‎

In patients with choroideremia, it is not known how smooth and mottled patterns on short-wavelength fundus autofluorescence (AF) imaging relate to retinal function.


Synonymous Variant in the CHM Gene Causes Aberrant Splicing in Choroideremia.

  • Mariana Matioli da Palma‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2020‎

Choroideremia is an inherited retinal degeneration caused by 280 different pathogenic variants in the CHM gene. Only one silent/synonymous variant (c.1359C>T; p.(Ser453=)) has been reported and was classified as inconclusive based on in silico analysis. This study elucidates the pathogenicity of this variant also found in a Brazilian patient.


Rab GTPase prenylation hierarchy and its potential role in choroideremia disease.

  • Monika Köhnke‎ et al.
  • PloS one‎
  • 2013‎

Protein prenylation is a widespread post-translational modification in eukaryotes that plays a crucial role in membrane targeting and signal transduction. RabGTPases is the largest group of post-translationally C-terminally geranylgeranylated. All Rabs are processed by Rab geranylgeranyl-transferase and Rab escort protein (REP). Human genetic defects resulting in the loss one of two REP isoforms REP-1, lead to underprenylation of RabGTPases that manifests in retinal degradation and blindness known as choroideremia. In this study we used a combination of microinjections and chemo-enzymatic tagging to establish whether Rab GTPases are prenylated and delivered to their target cellular membranes with the same rate. We demonstrate that although all tested Rab GTPases display the same rate of membrane delivery, the extent of Rab prenylation in 5 hour time window vary by more than an order of magnitude. We found that Rab27a, Rab27b, Rab38 and Rab42 display the slowest prenylation in vivo and in the cell. Our work points to possible contribution of Rab38 to the emergence of choroideremia in addition to Rab27a and Rab27b.


Comparing Clinical Perimetry and Population Receptive Field Measures in Patients with Choroideremia.

  • Edward H Silson‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2018‎

Choroideremia (CHM) is an X-linked recessive form of hereditary retinal degeneration, which, at advanced stages, leaves only small central islands of preserved retinal tissue. Unlike many other retinal diseases, the spared tissue in CHM supports excellent central vision and stable fixation. Such spared topography in CHM presents an ideal platform to explore the relationship between preserved central retinal structure and the retinotopic organization of visual cortex by using functional magnetic resonance imaging (fMRI).


Update on Gene Therapy Clinical Trials for Choroideremia and Potential Experimental Therapies.

  • Alessandro Abbouda‎ et al.
  • Medicina (Kaunas, Lithuania)‎
  • 2021‎

Background and objectives: Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations involving the CHM gene. Gene therapy has entered late-phase clinical trials, although there have been variable results. This review gives a summary on the outcomes of phase I/II CHM gene therapy trials and describes other potential experimental therapies. Materials and Methods: A Medline (National Library of Medicine, Bethesda, MD, USA) search was performed to identify all articles describing gene therapy treatments available for CHM. Results: Five phase I/II clinical trials that reported subretinal injection of adeno-associated virus Rab escort protein 1 (AAV2.REP1) vector in CHM patients were included. The Oxford study (NCT01461213) included 14 patients; a median gain of 5.5 ± 6.8 SD (-6 min, 18 max) early treatment diabetic retinopathy study (ETDRS) letters was reported. The Tubingen study (NCT02671539) included six patients; only one patient had an improvement of 17 ETDRS letters. The Alberta study (NCT02077361) enrolled six patients, and it reported a minimal vision change, except for one patient who gained 15 ETDRS letters. Six patients were enrolled in the Miami trial (NCT02553135), which reported a median gain of 2 ± 4 SD (-1 min, 10 max) ETDRS letters. The Philadelphia study (NCT02341807) included 10 patients; best corrected visual acuity (BCVA) returned to baseline in all by one-year follow-up, but one patient had -17 ETDRS letters from baseline. Overall, 40 patients were enrolled in trials, and 34 had 2 years of follow-up, with a median gain of 1.5 ± 7.2 SD (-14 min, 18 max) in ETDRS letters. Conclusions: The primary endpoint, BCVA following gene therapy in CHM, showed a marginal improvement with variability between trials. Optimizing surgical technique and pre-, peri-, and post-operative management with immunosuppressants to minimize any adverse ocular inflammatory events could lead to reduced incidence of complications. The ideal therapeutic window needs to be addressed to ensure that the necessary cell types are adequately transduced, minimizing viral toxicity, to prolong long-term transgenic potential. Long-term efficacy will be addressed by ongoing studies.


Expression of Rab Prenylation Pathway Genes and Relation to Disease Progression in Choroideremia.

  • Lewis E Fry‎ et al.
  • Translational vision science & technology‎
  • 2021‎

Choroideremia results from the deficiency of Rab Escort Protein 1 (REP1), encoded by CHM, involved in the prenylation of Rab GTPases. Here, we investigate whether the transcription and expression of other genes involved in the prenylation of Rab proteins correlates with disease progression in a cohort of patients with choroideremia.


Next-generation sequencing-based clinical diagnosis of choroideremia and comprehensive mutational and clinical analyses.

  • Feng-Juan Gao‎ et al.
  • BMC ophthalmology‎
  • 2020‎

To report the clinical and genetic findings from seven Chinese patients with choroideremia.


Genetic analysis and clinical phenotype of two Indian families with X-linked choroideremia.

  • Rajani Battu‎ et al.
  • Indian journal of ophthalmology‎
  • 2016‎

This study aims to describe the phenotype and genotype of two Indian families affected with X-linked choroideremia (CHM).


Subretinal timrepigene emparvovec in adult men with choroideremia: a randomized phase 3 trial.

  • Robert E MacLaren‎ et al.
  • Nature medicine‎
  • 2023‎

Choroideremia is a rare, X-linked retinal degeneration resulting in progressive vision loss. A randomized, masked, phase 3 clinical trial evaluated the safety and efficacy over 12 months of follow-up in adult males with choroideremia randomized to receive a high-dose (1.0 × 1011 vector genomes (vg); n = 69) or low-dose (1.0 × 1010 vg; n = 34) subretinal injection of the AAV2-vector-based gene therapy timrepigene emparvovec versus non-treated control (n = 66). Most treatment-emergent adverse events were mild or moderate. The trial did not meet its primary endpoint of best-corrected visual acuity (BCVA) improvement. In the primary endpoint analysis, three of 65 participants (5%) in the high-dose group, one of 34 (3%) participants in the low-dose group and zero of 62 (0%) participants in the control group had ≥15-letter Early Treatment Diabetic Retinopathy Study (ETDRS) improvement from baseline BCVA at 12 months (high dose, P = 0.245 versus control; low dose, P = 0.354 versus control). As the primary endpoint was not met, key secondary endpoints were not tested for significance. In a key secondary endpoint, nine of 65 (14%), six of 35 (18%) and one of 62 (2%) participants in the high-dose, low-dose and control groups, respectively, experienced ≥10-letter ETDRS improvement from baseline BCVA at 12 months. Potential opportunities to enhance future gene therapy studies for choroideremia include optimization of entry criteria (more preserved retinal area), surgical techniques and clinical endpoints. EudraCT registration: 2015-003958-41 .


Bilateral visual acuity decline in males with choroideremia: a pooled, cross-sectional meta-analysis.

  • Duygu Bozkaya‎ et al.
  • BMC ophthalmology‎
  • 2022‎

Choroideremia is a rare inherited retinal disease that leads to blindness. Visual acuity (VA) is a key outcome measure in choroideremia treatment studies, but VA decline rates change with age. An accurate understanding of the natural deterioration of VA in choroideremia is important to assess the treatment effect of new therapies in which VA is the primary outcome measure. We conducted a meta-analysis of data on individuals with choroideremia to determine the rate of VA deterioration between the better- and worse-seeing eye (BSE and WSE, respectively).


Gene Augmentation of CHM Using Non-Viral Episomal Vectors in Models of Choroideremia.

  • Lyes Toualbi‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors. However, late-phase trials have failed to show significant functional improvements and have raised safety concerns about inflammatory events potentially caused by the use of viruses. Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region (S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish, using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of prenylation function by 75%, indicating correction of the underlying biochemical defect associated with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival, prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors show promise as a potential gene-augmentation strategy without the use of immunogenic viral components, which could be applicable to many inherited retinal disease genes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: