2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Transcriptome signature of the adult mouse choroid plexus.

  • Fernanda Marques‎ et al.
  • Fluids and barriers of the CNS‎
  • 2011‎

Although the gene expression profile of several tissues in humans and in rodent animal models has been explored, analysis of the complete choroid plexus (CP) transcriptome is still lacking. A better characterization of the CP transcriptome can provide key insights into its functions as one of the barriers that separate the brain from the periphery and in the production of cerebrospinal fluid.


Culture models to study leukocyte trafficking across the choroid plexus.

  • Tobias Tenenbaum‎ et al.
  • Fluids and barriers of the CNS‎
  • 2013‎

A critical point during the course of central nervous system infection is the influx of leukocytes from the blood into the brain across the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). However, experimental in vitro models to investigate leukocyte transmigration across cultured choroid plexus epithelial cells have been lacking so far.


Transcriptional profiling of transport mechanisms and regulatory pathways in rat choroid plexus.

  • Søren N Andreassen‎ et al.
  • Fluids and barriers of the CNS‎
  • 2022‎

Dysregulation of brain fluid homeostasis associates with brain pathologies in which fluid accumulation leads to elevated intracranial pressure. Surgical intervention remains standard care, since specific and efficient pharmacological treatment options are limited for pathologies with disturbed brain fluid homeostasis. Such lack of therapeutic targets originates, in part, from the incomplete map of the molecular mechanisms underlying cerebrospinal fluid (CSF) secretion by the choroid plexus.


Non-invasive measurement of choroid plexus apparent blood flow with arterial spin labeling.

  • Li Zhao‎ et al.
  • Fluids and barriers of the CNS‎
  • 2020‎

The choroid plexus is a major contributor to the generation of cerebrospinal fluid (CSF) and the maintenance of its electrolyte and metabolite balance. Here, we sought to characterize the blood flow dynamics of the choroid plexus using arterial spin labeling (ASL) MRI to establish ASL as a non-invasive tool for choroid plexus function and disease studies.


Choroid plexus LAT2 and SNAT3 as partners in CSF amino acid homeostasis maintenance.

  • Elena Dolgodilina‎ et al.
  • Fluids and barriers of the CNS‎
  • 2020‎

Cerebrospinal fluid (CSF) is mainly produced by the choroid plexus (CP) located in brain ventricles. Although derived from blood plasma, it is nearly protein-free (~ 250-fold less) and contains about 2-20-fold less free amino acids, with the exception of glutamine (Gln) which is nearly equal. The aim of this study was to determine which amino acid transporters are expressed in mouse CP epithelium in order to gain understanding about how this barrier maintains the observed amino acid concentration gradient.


Morphological and mitochondrial changes in murine choroid plexus epithelial cells during healthy aging.

  • Valentina Scarpetta‎ et al.
  • Fluids and barriers of the CNS‎
  • 2023‎

Choroid plexuses (ChPs) are intraventricular structures mainly composed by specialized epithelial cells interconnected by tight junctions that establish the blood-cerebrospinal fluid (CSF) barrier. ChPs are essential to produce CSF and transport solutes from and into the brain. Deterioration of ChP function and morphology has been correlated to worsening of neurodegenerative disorders. We here map morpho-functional changes in the ChP epithelial cells during healthy aging, starting from young adult to 2-years old mice.


Developmental changes in the transcriptome of the rat choroid plexus in relation to neuroprotection.

  • Ingrid Kratzer‎ et al.
  • Fluids and barriers of the CNS‎
  • 2013‎

The choroid plexuses are the interface between the blood and the cerebrospinal fluid (CSF) contained within the ventricular spaces of the central nervous system. The tight junctions linking adjacent cells of the choroidal epithelium create a physical barrier to paracellular movement of molecules. Multispecific efflux transporters as well as drug-metabolizing and antioxidant enzymes functioning in these cells contribute to a metabolic barrier. These barrier properties reflect a neuroprotective function of the choroid plexus. The choroid plexuses develop early during embryogenesis and provide pivotal control of the internal environment throughout development when the brain is especially vulnerable to toxic insults. Perinatal injuries like hypoxia and trauma, and exposure to drugs or toxic xenobiotics can have serious consequences on neurogenesis and long-term development. The present study describes the developmental expression pattern of genes involved in the neuroprotective functions of the blood-CSF barrier.


Age-appropriate potassium clearance from perinatal cerebrospinal fluid depends on choroid plexus NKCC1.

  • Ryann M Fame‎ et al.
  • Fluids and barriers of the CNS‎
  • 2023‎

Regulation of the volume and electrolyte composition of the cerebrospinal fluid (CSF) is vital for brain development and function. The Na-K-Cl co-transporter NKCC1 in the choroid plexus (ChP) plays key roles in regulating CSF volume by co-transporting ions and mediating same-direction water movements. Our previous study showed ChP NKCC1 is highly phosphorylated in neonatal mice as the CSF K+ level drastically decreases and that overexpression of NKCC1 in the ChP accelerates CSF K+ clearance and reduces ventricle size [1]. These data suggest that NKCC1 mediates CSF K+ clearance following birth in mice. In this current study, we used CRISPR technology to create a conditional NKCC1 knockout mouse line and evaluated CSF K+ by Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES). We demonstrated ChP-specific reduction of total and phosphorylated NKCC1 in neonatal mice following embryonic intraventricular delivery of Cre recombinase using AAV2/5. ChP-NKCC1 knockdown was accompanied by a delayed perinatal clearance of CSF K+. No gross morphological disruptions were observed in the cerebral cortex. We extended our previous results by showing embryonic and perinatal rats shared key characteristics with mice, including decreased ChP NKCC1 expression level, increased ChP NKCC1 phosphorylation state, and increased CSF K+ levels compared to adult. Collectively, these follow up data support ChP NKCC1's role in age-appropriate CSF K+ clearance during neonatal development.


Hypercholesterolemia negatively influences morphology and molecular markers of epithelial cells within the choroid plexus in rabbits.

  • Fumiko Obata‎ et al.
  • Fluids and barriers of the CNS‎
  • 2020‎

Choroid plexus (CP) is an important tissue not only to produce cerebrospinal fluid (CSF) but also to regulate substances that are secreted into or absorbed from CSF through blood-cerebrospinal fluid barrier (BCSFB) formed by CP epithelial cells (CPECs). CPECs display signs of deterioration in aged and diseased people. However, whether CPECs in hypercholesterolemic animals develop such damage is not known.


Comparative transcriptomics of choroid plexus in Alzheimer's disease, frontotemporal dementia and Huntington's disease: implications for CSF homeostasis.

  • Edward G Stopa‎ et al.
  • Fluids and barriers of the CNS‎
  • 2018‎

In Alzheimer's disease, there are striking changes in CSF composition that relate to altered choroid plexus (CP) function. Studying CP tissue gene expression at the blood-cerebrospinal fluid barrier could provide further insight into the epithelial and stromal responses to neurodegenerative disease states.


The choroid plexus: a door between the blood and the brain for tissue-type plasminogen activator.

  • Vincent Zuba‎ et al.
  • Fluids and barriers of the CNS‎
  • 2022‎

In the vascular compartment, the serine protease tissue-type plasminogen activator (tPA) promotes fibrinolysis, justifying its clinical use against vasculo-occlusive diseases. Accumulating evidence shows that circulating tPA (endogenous or exogenous) also controls brain physiopathological processes, like cerebrovascular reactivity, blood-brain barrier (BBB) homeostasis, inflammation and neuronal fate. Whether this occurs by direct actions on parenchymal cells and/or indirectly via barriers between the blood and the central nervous system (CNS) remains unclear. Here, we postulated that vascular tPA can reach the brain parenchyma via the blood-cerebrospinal fluid barrier (BCSFB), that relies on choroid plexus (CP) epithelial cells (CPECs).


The choroid plexus acts as an immune cell reservoir and brain entry site in experimental autoimmune encephalomyelitis.

  • Ivana Lazarevic‎ et al.
  • Fluids and barriers of the CNS‎
  • 2023‎

The choroid plexus (ChP) has been suggested as an alternative central nervous system (CNS) entry site for CCR6+ Th17 cells during the initiation of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). To advance our understanding of the importance of the ChP in orchestrating CNS immune cell entry during neuroinflammation, we here directly compared the accumulation of CD45+ immune cell subsets in the ChP, the brain and spinal cord at different stages of EAE by flow cytometry. We found that the ChP harbors high numbers of CD45int resident innate but also of CD45hi adaptive immune cell subsets including CCR6+ Th17 cells. With the exception to tissue-resident myeloid cells and B cells, numbers of CD45+ immune cells and specifically of CD4+ T cells increased in the ChP prior to EAE onset and remained elevated while declining in brain and spinal cord during chronic disease. Increased numbers of ChP immune cells preceded their increase in the cerebrospinal fluid (CSF). Th17 but also other CD4+ effector T-cell subsets could migrate from the basolateral to the apical side of the blood-cerebrospinal fluid barrier (BCSFB) in vitro, however, diapedesis of effector Th cells including that of Th17 cells did not require interaction of CCR6 with BCSFB derived CCL20. Our data underscore the important role of the ChP as CNS immune cell entry site in the context of autoimmune neuroinflammation.


Accurate, strong, and stable reporting of choroid plexus epithelial cells in transgenic mice using a human transthyretin BAC.

  • Brett A Johnson‎ et al.
  • Fluids and barriers of the CNS‎
  • 2018‎

Choroid plexus epithelial cells express high levels of transthyretin, produce cerebrospinal fluid and many of its proteins, and make up the blood-cerebrospinal fluid barrier. Choroid plexus epithelial cells are vital to brain health and may be involved in neurological diseases. Transgenic mice containing fluorescent and luminescent reporters of these cells would facilitate their study in health and disease, but prior transgenic reporters lost expression over the early postnatal period.


In vitro investigation of the effect of proinflammatory cytokines on mouse choroid plexus membrane transporters Ncbe and NKCC1.

  • Laura Øllegaard Johnsen‎ et al.
  • Fluids and barriers of the CNS‎
  • 2023‎

Intraventricular hemorrhage is a potentially life-threatening condition. Approximately 20% of patients develop posthemorrhagic hydrocephalus with increased ventricular volume and intracranial pressure. Hydrocephalus develops partially due to increased secretion of cerebrospinal fluid by the choroid plexus. During hemorrhage a multitude of factors are released into the cerebrospinal fluid. Many of these have been implicated in the hypersecretion. In this study, we have investigated the isolated effect of inflammatory components, on the abundance of two membrane transporters involved in cerebrospinal fluid secretion by the choroid plexus: the Na+-dependent Cl-/HCO3- exchanger, Ncbe, and the Na+, K+, 2Cl- cotransporter, NKCC1. We have established a primary choroid plexus epithelial cell culture from 1 to 7 days old mouse pups. Seven days after seeding, the cells formed a monolayer. The cells were treated with either tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1β), or interleukin 6 (IL-6) to mimic inflammation. The data show that treatment with TNFα, and IL-1β only transiently increased NKCC1 abundance whereas the effect on Ncbe abundance was a transient decrease. IL-6 however significantly increased NKCC1 (242%), the phosphorylated NKCC1 (147%), as well as pSPAK (406%) abundance, but had no effect on Ncbe. This study suggests that the inflammatory pathway involved in hypersecretion primarily is mediated by activation of basolateral receptors in the choroid plexus, mainly facilitated by IL-6. This study highlights the complexity of the pathophysiological circumstances occurring during intraventricular hemorrhage.


Genetic disruption of slc4a10 alters the capacity for cellular metabolism and vectorial ion transport in the choroid plexus epithelium.

  • Inga Baasch Christensen‎ et al.
  • Fluids and barriers of the CNS‎
  • 2020‎

Genetic disruption of slc4a10, which encodes the sodium-dependent chloride/bicarbonate exchanger Ncbe, leads to a major decrease in Na+-dependent HCO3- import into choroid plexus epithelial cells in mice and to a marked reduction in brain intraventricular fluid volume. This suggests that Ncbe functionally is a key element in vectorial Na+ transport and thereby for cerebrospinal fluid secretion in the choroid plexus. However, slc4a10 disruption results in severe changes in expression of Na+,K+-ATPase complexes and other major transport proteins, indicating that profound cellular changes accompany the genetic manipulation.


Elevated CSF inflammatory markers in patients with idiopathic normal pressure hydrocephalus do not promote NKCC1 hyperactivity in rat choroid plexus.

  • Sara Diana Lolansen‎ et al.
  • Fluids and barriers of the CNS‎
  • 2021‎

Idiopathic normal pressure hydrocephalus (iNPH) is a potentially reversible neurological condition of unresolved etiology characterized by a clinical triad of symptoms; gait disturbances, urinary incontinence, and cognitive deterioration. In the present study, we aimed to elucidate the molecular coupling between inflammatory markers and development of iNPH and determine whether inflammation-induced hyperactivity of the choroidal Na+/K+/2Cl- cotransporter (NKCC1) that is involved in cerebrospinal fluid (CSF) secretion could contribute to the iNPH pathogenesis.


Active induction of experimental autoimmune encephalomyelitis by MOG35-55 peptide immunization is associated with differential responses in separate compartments of the choroid plexus.

  • Nivetha Murugesan‎ et al.
  • Fluids and barriers of the CNS‎
  • 2012‎

There is increasing awareness that, aside from producing cerebrospinal fluid, the choroid plexus (CP) might be a key regulator of immune activity in the central nervous system (CNS) during neuroinflammation. Specifically, the CP has recently been posited to control entry of sentinel T cells into the uninflamed CNS during the early stages of neuroinflammatory diseases, like multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). As the CP is compartmentalized into a stromal core containing fenestrated capillaries devoid of typical blood-brain barrier properties, surrounded by a tight junction-expressing choroidal epithelium, each of these compartments might mount unique responses that instigate the neuroinflammatory process.


Gene expression-based comparison of the human secretory neuroepithelia of the brain choroid plexus and the ocular ciliary body: potential implications for glaucoma.

  • Sarah F Janssen‎ et al.
  • Fluids and barriers of the CNS‎
  • 2014‎

The neuroepithelia of the choroid plexus (CP) in the brain and the ciliary body (CB) of the eye have common embryological origins and share similar micro-structure and functions. The CP epithelium (CPE) and the non-pigmented epithelium (NPE) of the CB produce the cerebrospinal fluid (CSF) and the aqueous humor (AH) respectively. Production and outflow of the CSF determine the intracranial pressure (ICP); production and outflow of the AH determine the intraocular pressure (IOP). Together, the IOP and ICP determine the translaminar pressure on the optic disc which may be involved in the pathophysiology of primary open angle glaucoma (POAG). The aim of this study was to compare the molecular machinery of the secretory neuroepithelia of the CP and CB (CPE versus NPE) and to determine their potential role in POAG.


Transporter-mediated L-glutamate elimination from cerebrospinal fluid: possible involvement of excitatory amino acid transporters expressed in ependymal cells and choroid plexus epithelial cells.

  • Shin-ichi Akanuma‎ et al.
  • Fluids and barriers of the CNS‎
  • 2015‎

L-Glutamate (L-Glu) is the major excitatory neurotransmitter in the CNS, and its level in cerebrospinal fluid (CSF) is reported to be increased in neuroexcitatory diseases such as epilepsy. Since L-Glu concentration in the CSF is reported to be lower than that in plasma, it has been proposed that some mechanisms of L-Glu clearance from the CSF operate in the brain. The purpose of this study was to elucidate the major pathway of L-Glu elimination from rat CSF and the transporters responsible.


Ecrg4 expression and its product augurin in the choroid plexus: impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury.

  • Ana Maria Gonzalez‎ et al.
  • Fluids and barriers of the CNS‎
  • 2011‎

The content and composition of cerebrospinal fluid (CSF) is determined in large part by the choroid plexus (CP) and specifically, a specialized epithelial cell (CPe) layer that responds to, synthesizes, and transports peptide hormones into and out of CSF. Together with ventricular ependymal cells, these CPe relay homeostatic signals throughout the central nervous system (CNS) and regulate CSF hydrodynamics. One new candidate signal is augurin, a newly recognized 14 kDa protein that is encoded by esophageal cancer related gene-4 (Ecrg4), a putative tumor suppressor gene whose presence and function in normal tissues remains unexplored and enigmatic. The aim of this study was to explore whether Ecrg4 and its product augurin, can be implicated in CNS development and the response to CNS injury.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: