Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Simultaneous Monitoring of Mutation and Chimerism Using Next-Generation Sequencing in Myelodysplastic Syndrome.

  • Jong-Mi Lee‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

Monitoring minimal residual disease (MRD) provides important information during treatment of hematologic malignancies. Chimerism analysis also provides key information after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recent advances in next-generation sequencing (NGS) have enabled identification of various mutations and quantification of mutant allele burden. In this study, we developed a new analytic algorithm to monitor chimerism applicable to NGS multi-gene panel in use to identify mutations of myelodysplastic syndrome (MDS). We enrolled patients who were diagnosed with MDS and received allo-HSCT and their corresponding donors. Monitoring MRD by NGS assay was performed using 53 DNA samples by calculating mutant allele burden after treatment. For monitoring chimerism by NGS, we selected 121 single nucleotide polymorphisms (SNPs) after careful stepwise evaluation and calculated average donor allele burden. Data obtained from NGS were compared with bone marrow findings, chromosome analysis and short tandem repeat (STR)-based chimerism. SNP-based NGS chimerism analysis was accurate and even superior to conventional STR method by overcoming the various technical limitations of STR. In addition, simultaneous monitoring of mutation and chimerism using NGS could implement comprehensive pre- and post-HSCT monitoring of various clinical conditions such as complete donor chimerism, persistent mixed chimerism, early relapse, and even donor cell-derived diseases.


Assessment of Minimal Residual Disease by Next Generation Sequencing in Peripheral Blood as a Complementary Tool for Personalized Transplant Monitoring in Myeloid Neoplasms.

  • Paula Aguirre-Ruiz‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

Patients with myeloid neoplasms who relapsed after allogenic hematopoietic stem cell transplant (HSCT) have poor prognosis. Monitoring of chimerism and specific molecular markers as a surrogate measure of relapse is not always helpful; therefore, improved systems to detect early relapse are needed. We hypothesized that the use of next generation sequencing (NGS) could be a suitable approach for personalized follow-up post-HSCT. To validate our hypothesis, we analyzed by NGS, a retrospective set of peripheral blood (PB) DNA samples previously evaluated by high-sensitive quantitative PCR analysis using insertion/deletion polymorphisms (indel-qPCR) chimerism engraftment. Post-HCST allelic burdens assessed by NGS and chimerism status showed a similar time-course pattern. At time of clinical relapse in 8/12 patients, we detected positive NGS-based minimal residual disease (NGS-MRD). Importantly, in 6/8 patients, we were able to detect NGS-MRD at time points collected prior to clinical relapse. We also confirmed the disappearance of post-HCST allelic burden in non-relapsed patients, indicating true clinical specificity. This study highlights the clinical utility of NGS-based post-HCST monitoring in myeloid neoplasia as a complementary specific analysis to high-sensitive engraftment testing. Overall, NGS-MRD testing in PB is widely applicable for the evaluation of patients following HSCT and highly valuable to personalized early treatment intervention when mixed chimerism is detected.


Fludarabine-Cyclophosphamide-Based Conditioning with Antithymocyte Globulin Serotherapy Is Associated with Durable Engraftment and Manageable Infections in Children with Severe Aplastic Anemia.

  • Małgorzata Salamonowicz-Bodzioch‎ et al.
  • Journal of clinical medicine‎
  • 2021‎

Severe aplastic anemia (SAA) is a bone marrow failure syndrome that can be treated with hematopoietic cell transplantation (HCT) or immunosuppressive (IS) therapy. A retrospective cohort of 56 children with SAA undergoing transplantation with fludarabine-cyclophosphamide-ATG-based conditioning (FluCyATG) was analyzed. The endpoints were overall survival (OS), event-free survival (EFS), cumulative incidence (CI) of graft versus host disease (GVHD) and CI of viral replication. Engraftment was achieved in 53/56 patients, and four patients died (two due to fungal infection, and two of neuroinfection). The median time to neutrophil engraftment was 14 days and to platelet engraftment was 16 days, and median donor chimerism was above 98%. The overall incidence of acute GVHD was 41.5%, and that of grade III-IV acute GVHD was 14.3%. Chronic GVHD was diagnosed in 14.2% of children. The probability of 2-year GVHD-free survival was 76.1%. In the univariate analysis, a higher dose of cyclophosphamide and previous IS therapy were significant risk factors for worse overall survival. Episodes of viral replication occurred in 33/56 (58.9%) patients, but did not influence OS. The main advantages of FluCyATG include early engraftment with a very high level of donor chimerism, high overall survival and a low risk of viral replication after HCT.


Activated Phosphoinositide 3-Kinase Delta Syndrome 1: Clinical and Immunological Data from an Italian Cohort of Patients.

  • Giulio Tessarin‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

Activated phosphoinositide 3-kinase delta syndrome 1 (APDS-1) is a recently described inborn error of immunity caused by monoallelic gain-of-function mutations in the PIK3CD gene. We reviewed for the first time medical records and laboratory data of eight Italian APDS-1 patients. Recurrent sinopulmonary infections were the most common clinical feature at onset of disease. Seven patients presented lymphoproliferative disease, at onset or during follow-up, one of which resembled hemophagocytic lymphohistiocytosis (HLH). Genetic analysis of the PIK3CD gene revealed three novel mutations: functional testing confirmed their activating nature. In the remaining patients, the previously reported variants p.E1021K (n = 4) and p.E525A (n = 1) were identified. Six patients were started on immunoglobulin replacement treatment (IgRT). One patient successfully underwent hematopoietic stem cell transplantation (HSCT), with good chimerism and no GVHD at 21 months post-HSCT. APDS-1 is a combined immune deficiency with a wide variety of clinical manifestations and a complex immunological presentation. Besides IgRT, specific therapies targeting the PI3Kδ pathway will most likely become a valid aid for the amelioration of patients' clinical management and their quality of life.


Quantitative Evaluation of the Reduced Capacity of Skeletal Muscle Hypertrophy after Total Body Irradiation in Relation to Stem/Progenitor Cells.

  • Tsuyoshi Fukuzawa‎ et al.
  • Journal of clinical medicine‎
  • 2022‎

The effects of total body irradiation (TBI) to the capacity of skeletal muscle hypertrophy were quantified using the compensatory muscle hypertrophy model. We additionally assessed the responses of stem and/or progenitor cells in the muscles. A single TBI of 9.0, 5.0 and 2.5 Gy was delivered to C57BL/6 mice. Bone marrow stromal cells were obtained from GFP-Tg mice, and were injected into the tail vein of the recipient mice (1 × 106 cells/mouse), for bone marrow transplantation (BMT). Five weeks after TBI, the mean GFP-chimerism in the blood was 96 ± 0.8% in the 9 Gy, 83 ± 3.9% in the 5 Gy, and 8.4 ± 3.4% in the 2.5 Gy groups. This implied that the impact of 2.5 Gy is quite low and unavailable as the BMT treatment. Six weeks after the TBI/BMT procedure, muscle hypertrophy was induced in the right plantaris muscle by surgical ablation (SA) of the synergist muscles (gastrocnemius and soleus), and the contralateral left side was preserved as a control. The muscle hypertrophy capacity significantly decreased by 95% in the 9 Gy, 48% in the 5 Gy, and 36% in the 2.5 Gy groups. Furthermore, stem/progenitor cells in the muscle were enzymatically isolated and fractionated into non-sorted bulk cells, CD45-/34-/29+ (Sk-DN), and CD45-/34+ (Sk-34) cells, and myogenic capacity was confirmed by the presence of Pax7+ and MyoD+ cells in culture. Myogenic capacity also declined significantly in the Bulk and Sk-DN cell groups in all three TBI conditions, possibly implying that skeletal muscles are more susceptible to TBI than bone marrow. However, interstitial Sk-34 cells were insusceptible to TBI, retaining their myogenic/proliferative capacity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: