Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Donor derived hematopoietic stem cell niche transplantation facilitates mixed chimerism mediated donor specific tolerance.

  • Wensheng Zhang‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Compelling experimental evidence confirms that the robustness and longevity of mixed chimerism (MC) relies on the persistence and availability of donor-derived hematopoietic stem cell (HSC) niches in recipients. Based on our prior work in rodent vascularized composite allotransplantation (VCA) models, we hypothesize that the vascularized bone components in VCA bearing donor HSC niches, thus may provide a unique biologic opportunity to facilitate stable MC and transplant tolerance. In this study, by utilizing a series of rodent VCA models we demonstrated that donor HSC niches in the vascularized bone facilitate persistent multilineage hematopoietic chimerism in transplant recipients and promote donor-specific tolerance without harsh myeloablation. In addition, the transplanted donor HSC niches in VCA facilitated the donor HSC niches seeding to the recipient bone marrow compartment and contributed to the maintenance and homeostasis of stable MC. Moreover, this study provided evidences that chimeric thymus plays a role in MC-mediated transplant tolerance through a mechanism of thymic central deletion. Mechanistic insights from our study could lead to the use of vascularized donor bone with pre-engrafted HSC niches as a safe, complementary strategy to induce robust and stable MC-mediated tolerance in VCA or solid organ transplantation recipients.


Predicting Outcomes of Rat Vascularized Composite Allotransplants through Quantitative Measurement of Chimerism with PCR-Amplified Short Tandem Repeat.

  • Hui-Yun Cheng‎ et al.
  • Journal of immunology research‎
  • 2020‎

Chimerism has been associated with the induction and maintenance of tolerance to vascularized composite allotransplants (VCA). Although most VCA studies have examined chimerism using flow cytometry, we proposed that precision in the measurement of chimerism may be better approximated when complimentary polymerase chain reaction (PCR) is applied to a specific short tandem repeat (STR). We identified a STR, D10Rat25, which exhibited a ~20 bp difference in length between two rat strains (BN and LEW) often utilized as the donor and recipient in many allotransplantation studies. D10Rat25 was PCR-amplified and quantified with capillary electrophoresis. With pure LEW and BN DNA, a standard curve was constructed to measure chimerism with good linearity. When applied to rat VCA, the relationship between systematic (in peripheral blood) or local (at specific organ/tissues) chimerism to allograft outcomes was noted. We found that peripheral chimerism was elevated by up to ~9% postoperative month 1 (POM 1) but then reduced regardless of the final VCA outcome. However, differences in VCA skin chimerism between early rejection and POM 1 (shown as ΔChimerismPOM1-ER) were notable with respect to VCA outcomes. ROC analysis identified the optimum cutoff value as 17.7%. In summary, we have developed a reliable method to quantify the percentage of BN cells/DNA in BN-LEW chimeras. The detection limit was characterized, and the acquired data were comparable with flow cytometry. This method can be applied to solid organ and composite tissue allotransplantation studies.


The Mandible Ameliorates Facial Allograft Rejection and Is Associated with the Development of Regulatory T Cells and Mixed Chimerism.

  • Dante De Paz‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Vascularized composite allografts contain various tissue components and possess relative antigenicity, eliciting different degrees of alloimmune responses. To investigate the strategies for achieving facial allograft tolerance, we established a mouse hemiface transplant model, including the skin, muscle, mandible, mucosa, and vessels. However, the immunomodulatory effects of the mandible on facial allografts remain unclear. To understand the effects of the mandible on facial allograft survival, we compared the diversities of different facial allograft-elicited alloimmunity between a facial osteomyocutaneous allograft (OMC), including skin, muscle, oral mucosa, and vessels, and especially the mandible, and a myocutaneous allograft (MC) including the skin, muscle, oral mucosa, and vessels, but not the mandible. The different facial allografts of a BALB/c donor were transplanted into a heterotopic neck defect on fully major histocompatibility complex-mismatched C57BL/6 mice. The allogeneic OMC (Allo-OMC) group exhibited significant prolongation of facial allograft survival compared to the allogeneic MC group, both in the presence and absence of FK506 immunosuppressive drugs. With the use of FK506 monotherapy (2 mg/kg) for 21 days, the allo-OMC group, including the mandible, showed prolongation of facial allograft survival of up to 65 days, whereas the myocutaneous allograft, without the mandible, only survived for 34 days. The Allo-OMC group also displayed decreased lymphocyte infiltration into the facial allograft. Both groups showed similar percentages of B cells, T cells, natural killer cells, macrophages, and dendritic cells in the blood, spleen, and lymph nodes. However, a decrease in pro-inflammatory T helper 1 cells and an increase in anti-inflammatory regulatory T cells were observed in the blood and lymph nodes of the Allo-OMC group. Significantly increased percentages of donor immune cells were also observed in three lymphoid organs of the Allo-OMC group, suggesting mixed chimerism induction. These results indicated that the mandible has the potential to induce anti-inflammatory effects and mixed chimerism for prolonging facial allograft survival. The immunomodulatory understanding of the mandible could contribute to reducing the use of immunosuppressive regimens in clinical face allotransplantation including the mandible.


The intragraft vascularized bone marrow induces secondary donor-specific mystacial pad allograft tolerance.

  • Cheng-Hung Lin‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Vascularized bone marrow (VBM) is essential in tolerance induction through chimerism. We hypothesized that the inclusion of VBM contributes to the induction of mystacial pad allotransplantation tolerance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: