Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 285 papers

Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments.

  • X W Wang‎ et al.
  • Studies in mycology‎
  • 2016‎

During a study of indoor fungi, 145 isolates belonging to Chaetomiaceae were cultured from air, swab and dust samples from 19 countries. Based on the phylogenetic analyses of DNA-directed RNA polymerase II second largest subunit (rpb2), β-tubulin (tub2), ITS and 28S large subunit (LSU) nrDNA sequences, together with morphological comparisons with related genera and species, 30 indoor taxa are recognised, of which 22 represent known species, seven are described as new, and one remains to be identified to species level. In our collection, 69 % of the indoor isolates with six species cluster with members of the Chaetomium globosum species complex, representing Chaetomium sensu stricto. The other indoor species fall into nine lineages that are separated from each other with several known chaetomiaceous genera occurring among them. No generic names are available for five of those lineages, and the following new genera are introduced here: Amesia with three indoor species, Arcopilus with one indoor species, Collariella with four indoor species, Dichotomopilus with seven indoor species and Ovatospora with two indoor species. The generic concept of Botryotrichum is expanded to include Emilmuelleria and the chaetomium-like species B. muromum (= Ch. murorum) in which two indoor species are included. The generic concept of Subramaniula is expanded to include several chaetomium-like taxa as well as one indoor species. Humicola is recognised as a distinct genus including two indoor taxa. According to this study, Ch. globosum is the most abundant Chaetomiaceae indoor species (74/145), followed by Ch. cochliodes (17/145), Ch. elatum (6/145) and B. piluliferum (5/145). The morphological diversity of indoor Chaetomiaceae as well as the morphological characteristics of the new genera are described and illustrated. This taxonomic study redefines the generic concept of Chaetomium and provides new insight into the phylogenetic relationships among different genera within Chaetomiaceae.


Chaetomium and Chaetomium-like Species from European Indoor Environments Include Dichotomopilus finlandicus sp. nov.

  • Orsolya Kedves‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

The genus Chaetomium is a frequently occurring fungal taxon world-wide. Chaetomium and Chaetomium-like species occur in indoor environments, where they can degrade cellulose-based building materials, thereby causing structural damage. Furthermore, several species of this genus may also cause adverse effects on human health. The aims of this research were to identify Chaetomium and Chaetomium-like strains isolated from indoor environments in Hungary and Finland, two geographically distant regions of Europe with drier and wetter continental climates, respectively, and to study their morphological and physiological properties, as well as their extracellular enzyme activities, thereby comparing the Chaetomium and Chaetomium-like species isolated from these two different regions of Europe and their properties. Chaetomium and Chaetomium-like strains were isolated from flats and offices in Hungary, as well as from schools, flats, and offices in Finland. Fragments of the translation elongation factor 1α (tef1α), the second largest subunit of RNA polymerase II (rpb2) and β-tubulin (tub2) genes, as well as the internal transcribed spacer (ITS) region of the ribosomal RNA gene cluster were sequenced, and phylogenetic analysis of the sequences performed. Morphological examinations were performed by stereomicroscopy and scanning electron microscopy. Thirty-one Chaetomium sp. strains (15 from Hungary and 16 from Finland) were examined during the study. The most abundant species was Ch. globosum in both countries. In Hungary, 13 strains were identified as Ch. globosum, 1 as Ch. cochliodes, and 1 as Ch. interruptum. In Finland, 10 strains were Ch. globosum, 2 strains were Ch. cochliodes, 2 were Ch. rectangulare, and 2 isolates (SZMC 26527, SZMC 26529) proved to be representatives of a yet undescribed phylogenetic species from the closely related genus Dichotomopilus, which we formally describe here as the new species Dichotomopilus finlandicus. Growth of the isolates was examined at different temperatures (4, 15, 20, 25, 30, 37, 35, 40, and 45 °C), while their extracellular enzyme production was determined spectrophotometrically.


Split conformation of Chaetomium thermophilum Hsp104 disaggregase.

  • Yosuke Inoue‎ et al.
  • Structure (London, England : 1993)‎
  • 2021‎

Hsp104 and its bacterial homolog ClpB form hexameric ring structures and mediate protein disaggregation. The disaggregated polypeptide is thought to thread through the central channel of the ring. However, the dynamic behavior of Hsp104 during disaggregation remains unclear. Here, we reported the stochastic conformational dynamics and a split conformation of Hsp104 disaggregase from Chaetomium thermophilum (CtHsp104) in the presence of ADP by X-ray crystallography, cryo-electron microscopy (EM), and high-speed atomic force microscopy (AFM). ADP-bound CtHsp104 assembles into a 65 left-handed spiral filament in the crystal structure at a resolution of 2.7 Å. The unit of the filament is a hexamer of the split spiral structure. In the cryo-EM images, staggered and split hexameric rings were observed. Further, high-speed AFM observations showed that a substrate addition enhanced the conformational change and increased the split structure's frequency. Our data suggest that split conformation is an off-pathway state of CtHsp104 during disaggregation.


Phylogenetic reassessment of the Chaetomium globosum species complex.

  • X W Wang‎ et al.
  • Persoonia‎
  • 2016‎

Chaetomium globosum, the type species of the genus, is ubiquitous, occurring on a wide variety of substrates, in air and in marine environments. This species is recognised as a cellulolytic and/or endophytic fungus. It is also known as a source of secondary metabolites with various biological activities, having great potential in the agricultural, medicinal and industrial fields. On the negative side, C. globosum has been reported as an air contaminant causing adverse health effects and as causal agent of human fungal infections. However, the taxonomic status of C. globosum is still poorly understood. The contemporary species concept for this fungus includes a broadly defined morphological diversity as well as a large number of synonymies with limited phylogenetic evidence. The aim of this study is, therefore, to resolve the phylogenetic limits of C. globosum s.str. and related species. Screening of isolates in the collections of the CBS-KNAW Fungal Biodiversity Centre (The Netherlands) and the China General Microbiological Culture Collection Centre (China) resulted in recognising 80 representative isolates of the C. globosum species complex. Thirty-six species are identified based on phylogenetic inference of six loci, supported by typical morphological characters, mainly ascospore shape. Of these, 12 species are newly described here. Additionally, C. cruentum, C. mollipilium, C. rectum, C. subterraneum and two varieties of C. globosum are synonymised under C. globosum s.str., and six species are resurrected, i.e. C. angustispirale, C. coarctatum, C. cochliodes, C. olivaceum, C. spiculipilium and C. subglobosum. Chaetomium ascotrichoides is segregated from C. madrasense and the genus name Chaetomidium is rejected. Five species, including C. globosum s.str., are typified here to stabilise their taxonomic status. A further evaluation of the six loci used in this study as potential barcodes indicated that the 28S large subunit (LSU) nrDNA and the internal transcribed spacer regions and intervening 5.8S nrRNA (ITS) gene regions were unreliable to resolve species, whereas β-tubulin (tub2) and RNA polymerase II second largest subunit (rpb2) showed the greatest promise as DNA barcodes for differentiating Chaetomium species. This study provides a starting point to establish a more robust classification system for Chaetomium and for the Chaetomiaceae.


Chaetomium atrobrunneum causing human eumycetoma: The first report.

  • Najwa A Mhmoud‎ et al.
  • PLoS neglected tropical diseases‎
  • 2019‎

In this communication, a case of black grain eumycetoma produced by the fungus C. atrobrunneum is reported. The patient was initially misdiagnosed with M. mycetomatis eumycetoma based on the grains' morphological and cytological features. However, further aerobic culture of the black grains generated a melanised fungus identified as C. atrobrunneum by conventional morphological methods and by internal transcribed spacer 2 (ITS2) ribosomal RNA gene sequencing. This is the first-ever report of C. atrobrunneum as a eumycetoma-causative organism of black grain eumycetoma. It is essential that the causative organism is identified to the species level, as this is important for proper patient management and to predict treatment outcome and prognosis.


Structural characterisation of the Chaetomium thermophilum Chl1 helicase.

  • Zuzana Hodáková‎ et al.
  • PloS one‎
  • 2021‎

Chl1 is a member of the XPD family of 5'-3' DNA helicases, which perform a variety of roles in genome maintenance and transmission. They possess a variety of unique structural features, including the presence of a highly variable, partially-ordered insertion in the helicase domain 1. Chl1 has been shown to be required for chromosome segregation in yeast due to its role in the formation of persistent chromosome cohesion during S-phase. Here we present structural and biochemical data to show that Chl1 has the same overall domain organisation as other members of the XPD family, but with some conformational alterations. We also present data suggesting the insert domain in Chl1 regulates its DNA binding.


Draft Genome Sequence of the Cellulolytic Fungus Chaetomium globosum.

  • Christina A Cuomo‎ et al.
  • Genome announcements‎
  • 2015‎

Chaetomium globosum is a filamentous fungus typically isolated from cellulosic substrates. This species also causes superficial infections of humans and, more rarely, can cause cerebral infections. Here, we report the genome sequence of C. globosum isolate CBS 148.51, which will facilitate the study and comparative analysis of this fungus.


Cytotoxic metabolites from the endophytic fungus Chaetomium globosum 7951.

  • Fang Wang‎ et al.
  • RSC advances‎
  • 2019‎

The following compounds were isolated from acetate extracts of Chaetomium globosum 7951 solid cultures: demethylchaetocochin C (1) and chaetoperazine A (3), two new epipolythiodioxopiperazine (ETP) alkaloids, a novel pyridine benzamide, 4-formyl-N-(3'-hydroxypyridin-2'-yl) benzamide (6), and three known ETP derivatives (2, 4, and 5). The structures of these compounds were determined using extensive spectroscopic data analysis. Compounds 1-3, and 6, inhibited the growth of MCF-7, MDA-MB-231, H460 and HCT-8 cells with an IC50 of 4.5 to 65.0 μM.


Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum.

  • Bang-Yan Wang‎ et al.
  • Journal of ginseng research‎
  • 2020‎

Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity.


Biochemical characterization of a GDP-mannose transporter from Chaetomium thermophilum.

  • Gowtham Thambra Rajan Premageetha‎ et al.
  • PloS one‎
  • 2023‎

Nucleotide Sugar Transporters (NSTs) belong to the SLC35 family (human solute carrier) of membrane transport proteins and are crucial components of the glycosylation machinery. NSTs are localized in the ER and Golgi apparatus membranes, where they accumulate nucleotide sugars from the cytosol for subsequent polysaccharide biosynthesis. Loss of NST function impacts the glycosylation of cell surface molecules. Mutations in NSTs cause several developmental disorders, immune disorders, and increased susceptibility to infection. Atomic resolution structures of three NSTs have provided a blueprint for a detailed molecular interpretation of their biochemical properties. In this work, we have identified, cloned, and expressed 18 members of the SLC35 family from various eukaryotic organisms in Saccharomyces cerevisiae. Out of 18 clones, we determined Vrg4 from Chaetomium thermophilum (CtVrg4) is a GDP-mannose transporter with an enhanced melting point temperature (Tm) of 56.9°C, which increases with the addition of substrates, GMP and GDP-mannose. In addition, we report-for the first time-that the CtVrg4 shows an affinity to bind to phosphatidylinositol lipids.


Regioselectivity of oxidation by a polysaccharide monooxygenase from Chaetomium thermophilum.

  • Chen Chen‎ et al.
  • Biotechnology for biofuels‎
  • 2018‎

Polysaccharide monooxygenases (PMOs) of the auxiliary activity 9 (AA9) family have been reported to oxidize C1, C4, and C6 positions in cellulose. However, currently no direct evidence exists that PMOs oxidize C6 positions in cellulose, and molecular mechanism of C1, C4 and C6 oxidation is unclear.


Structural Characterization of Glycerol Kinase from the Thermophilic Fungus Chaetomium thermophilum.

  • Piotr Wilk‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Glycerol is an organic compound that can be utilized as an alternative source of carbon by various organisms. One of the ways to assimilate glycerol by the cell is the phosphorylative catabolic pathway in which its activation is catalyzed by glycerol kinase (GK) and glycerol-3-phosphate (G3P) is formed. To date, several GK crystal structures from bacteria, archaea, and unicellular eukaryotic parasites have been solved. Herein, we present a series of crystal structures of GK from Chaetomium thermophilum (CtGK) in apo and glycerol-bound forms. In addition, we show the feasibility of an ADP-dependent glucokinase (ADPGK)-coupled enzymatic assay to measure the CtGK activity. New structures described in our work provide structural insights into the GK catalyzed reaction in the filamentous fungus and set the foundation for understanding the glycerol metabolism in eukaryotes.


A Peroxygenase from Chaetomium globosum Catalyzes the Selective Oxygenation of Testosterone.

  • Jan Kiebist‎ et al.
  • Chembiochem : a European journal of chemical biology‎
  • 2017‎

Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates, including less-activated hydrocarbons, by transferring peroxide-borne oxygen. We investigated a cell-free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule testosterone by a novel unspecific peroxygenase (UPO) that is produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and nitrogen. Purification by fast protein liquid chromatography revealed two enzyme fractions with the same molecular mass (36 kDa) and with specific activity of 4.4 to 12 U mg-1 . Although the well-known UPOs of Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) failed to convert testosterone in a comparative study, the UPO of C. globosum (CglUPO) accepted testosterone as substrate and converted it with total turnover number (TTN) of up to 7000 into two oxygenated products: the 4,5-epoxide of testosterone in β-configuration and 16α-hydroxytestosterone. The reaction performed on a 100 mg scale resulted in the formation of about 90 % of the epoxide and 10 % of the hydroxylation product, both of which could be isolated with purities above 96 %. Thus, CglUPO is a promising biocatalyst for the oxyfunctionalization of bulky steroids and it will be a useful tool for the synthesis of pharmaceutically relevant steroidal molecules.


Chemical constituents from the medicinal herb-derived fungus Chaetomium globosum Km1226.

  • Chia-Hao Chang‎ et al.
  • Botanical studies‎
  • 2023‎

Endophytic fungi have proven to be a rich source of novel natural products with a wide-array of biological activities and higher levels of structural diversity.


Transcriptional profiling of ESTs from the biocontrol fungus Chaetomium cupreum.

  • Haiyan Zhang‎ et al.
  • TheScientificWorldJournal‎
  • 2012‎

Comparative analysis was applied to two cDNA/ESTs libraries (C1 and C2) from Chaetomium cupreum. A total of 5538 ESTs were sequenced and assembled into 2162 unigenes including 585 contigs and 1577 singletons. BlastX analysis enabled the identification of 1211 unigenes with similarities to sequences in the public databases. MFS monosaccharide transporter was found as the gene expressed at the highest level in library C2, but no expression in C1. The majority of unigenes were library specific. Comparative analysis of the ESTs further revealed the difference of C. cupreum in gene expression and metabolic pathways between libraries. Two different sequences similar to the 48-KDa endochitinase and 46-KDa endochitinase were identified in libraries C1 and C2, respectively.


Enhancing recombinant Chaetomium thermophilium Formate Dehydrogenase Expression with CRISPR Technology.

  • Erhan Ar‎ et al.
  • The protein journal‎
  • 2021‎

Genetic manipulation of Escherichia coli influences the regulation of bacterial metabolism, which could be useful for the production of different targeted products. The RpoZ gene encodes for the ω subunit of the RNA polymerase (RNAP) and is involved in the regulation of the relA gene pathway. RelA is responsible for the production of guanosine pentaphosphate (ppGpp), which is a major alarmone in the stringent response. Expression of relA is reduced in the early hours of growth of RpoZ mutant E. coli. In the absence of the ω subunit, ppGpp affinity to RNAP is decreased; thus, rpoZ gene deleted E. coli strains show a modified stringent response. We used the E. coli K-12 MG1655 strain that lacks rpoZ (JEN202) to investigate the effect of the modified stringent response on recombinant protein production. However, the absence of the ω subunit results in diminished stability of the RNA polymerase at the promoter site. To avoid this, we used a deactivated CRISPR system that targets the ω subunit to upstream of the promoter site in the expression plasmid. The expression plasmid encodes for Chaetomium thermophilum formate dehydrogenase (CtFDH), a valuable enzyme for cofactor regeneration and CO2 reduction. A higher amount of CtFDH from the soluble fraction was purified from the JEN202 strain compared to the traditional BL21(DE3) method, thus offering a new strategy for batch-based recombinant enzyme production.


Anti-rheumatoid Activity of Secondary Metabolites Produced by Endophytic Chaetomium globosum.

  • Ahmed M Abdel-Azeem‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

The aim of the present study was to investigate the anti-rheumatoid activity of secondary metabolites produced by endophytic mycobiota in Egypt. A total of 27 endophytic fungi were isolated from 10 dominant medicinal plant host species in Wadi Tala, Saint Katherine Protectorate, arid Sinai, Egypt. Of those taxa, seven isolates of Chaetomium globosum (CG1-CG7), being the most frequent taxon, were recovered from seven different host plants and screened for production of active anti-inflammatory metabolites. Isolates were cultivated on half - strength potato dextrose broth for 21 days at 28°C on a rotatory shaker at 180 rpm, and extracted in ethyl acetate and methanol, respectively. The probable inhibitory effects of both extracts against an adjuvant induced arthritis (AIA) rat model were examined and compared with the effects of methotrexate (MTX) as a standard disease-modifying anti-rheumatoid drug. Disease activity and mobility scoring of AIA, histopathology and transmission electron microscopy (TEM) were used to evaluate probable inhibitory roles. A significant reduction (P < 0.05) in the severity of arthritis was observed in both the methanolic extract of CG6 (MCG6) and MTX treatment groups 6 days after treatment commenced. The average arthritis score of the MCG6 treatment group was (10.7 ± 0.82) compared to (13.8 ± 0.98) in the positive control group. The mobility score of the MCG6 treatment group (1.50 ± 0.55) was significantly lower than that of the positive control group (3.33 ± 0.82). In contrast, the ethyl acetate extract of CG6 (EACG6) treatment group showed no improvements in arthritis and mobility scores in AIA model rats. Histopathology and TEM findings confirmed the observation. Isolate CG6 was subjected to sequencing for confirmation of phenotypic identification. The internal transcribed spacer (ITS) 1-5.8 s - ITS2 rDNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number KC811080 in the NCBI Database. The present study revealed that the methanol extract of endophytic fungus C. globosum (KC811080) recovered from maidenhair fern has an inhibitory effect on inflammation, histopathology and morphological features of rheumatoid arthritis in an AIA rat model.


New Cytotoxic Cytochalasans from a Plant-Associated Fungus Chaetomium globosum kz-19.

  • Tantan Li‎ et al.
  • Marine drugs‎
  • 2021‎

Four new cytochalasans, phychaetoglobins A-D (1-4), together with twelve known cytochalasans (5-16), were isolated from a mangrove-associated fungus Chaetomium globosum kz-19. The new structures were elucidated on the basis of extensive 1D and 2D NMR, HR ESIMS spectroscopic analyses, and electronic circular dichroism (ECD) calculations. The absolute configuration of 2 was established by application of Mosher's method. Compounds 4-8 exhibited moderate cytotoxicities against A549 and HeLa cell lines with the IC50 values less than 20 μM.


An integrated approach for genome annotation of the eukaryotic thermophile Chaetomium thermophilum.

  • Thomas Bock‎ et al.
  • Nucleic acids research‎
  • 2014‎

The thermophilic fungus Chaetomium thermophilum holds great promise for structural biology. To increase the efficiency of its biochemical and structural characterization and to explore its thermophilic properties beyond those of individual proteins, we obtained transcriptomics and proteomics data, and integrated them with computational annotation methods and a multitude of biochemical experiments conducted by the structural biology community. We considerably improved the genome annotation of Chaetomium thermophilum and characterized the transcripts and expression of thousands of genes. We furthermore show that the composition and structure of the expressed proteome of Chaetomium thermophilum is similar to its mesophilic relatives. Data were deposited in a publicly available repository and provide a rich source to the structural biology community.


Kinetics and Predicted Structure of a Novel Xylose Reductase from Chaetomium thermophilum.

  • Julian Quehenberger‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

While in search of an enzyme for the conversion of xylose to xylitol at elevated temperatures, a xylose reductase (XR) gene was identified in the genome of the thermophilic fungus Chaetomium thermophilum. The gene was heterologously expressed in Escherichia coli as a His6-tagged fusion protein and characterized for function and structure. The enzyme exhibits dual cofactor specificity for NADPH and NADH and prefers D-xylose over other pentoses and investigated hexoses. A homology model based on a XR from Candida tenuis was generated and the architecture of the cofactor binding site was investigated in detail. Despite the outstanding thermophilicity of its host the enzyme is, however, not thermostable.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: