Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

The role of subcutaneous adipose tissue in supporting the copper balance in rats with a chronic deficiency in holo-ceruloplasmin.

  • Ekaterina Y Ilyechova‎ et al.
  • PloS one‎
  • 2017‎

We have previously shown that (1) an acute deficiency in blood serum holo-ceruloplasmin (Cp) developed in rats that were fed fodder containing silver ions (Ag-fodder) for one month and (2) the deficiency in holo-Cp was compensated by non-hepatic holo-Cp synthesis in rats that were chronically fed Ag-fodder for 6 months (Ag-rats). The purpose of the present study is to identify the organ(s) that compensate for the hepatic holo-Cp deficiency in the circulation. This study was performed on rats that were fed Ag-fodder (40 mg Ag·kg-1 body mass daily) for 6 months. The relative expression levels of the genes responsible for copper status were measured by RT-PCR. The in vitro synthesis and secretion of [14C]Cp were analyzed using a metabolic labeling approach. Oxidase activity was determined using a gel assay with o-dianisidine. Copper status and some hematological indexes were measured. Differential centrifugation, immunoblotting, immunoelectrophoresis, and atomic absorption spectrometry were included in the investigation. In the Ag-rats, silver accumulation was tissue-specific. Skeletal muscles and internal (IAT) and subcutaneous (SAT) adipose tissues did not accumulate silver significantly. In SAT, the mRNAs for the soluble and glycosylphosphatidylinositol-anchored ceruloplasmin isoforms were expressed, and their relative levels were increased two-fold in the Ag-rats. In parallel, the levels of the genes responsible for Cp metallation (Ctr1 and Atp7a/b) increased correspondingly. In the SAT of the Ag-rats, Cp oxidase activity was observed in the Golgi complex and plasma membrane. Moreover, full-length [14C]Cp polypeptides were released into the medium by slices of SAT. The possibilities that SAT is part of a system that controls the copper balance in mammals, and it plays a significant role in supporting copper homeostasis throughout the body are discussed.


Influence of Silver Nanoparticles on the Growth of Ascitic and Solid Ehrlich Adenocarcinoma: Focus on Copper Metabolism.

  • Daria N Magazenkova‎ et al.
  • Pharmaceutics‎
  • 2023‎

The link between copper metabolism and tumor progression motivated us to use copper chelators for suppression of tumor growth. We assume that silver nanoparticles (AgNPs) can be used for lowering bioavailable copper. Our assumption is based on the ability of Ag(I) ions released by AgNPs in biological media and interfere with Cu(I) transport. Intervention of Ag(I) into copper metabolism leads to the replacement of copper by silver in ceruloplasmin and the decrease in bioavailable copper in the bloodstream. To check this assumption, mice with ascitic or solid Ehrlich adenocarcinoma (EAC) were treated with AgNPs using different protocols. Copper status indexes (copper concentration, ceruloplasmin protein level, and oxidase activity) were monitored to assess copper metabolism. The expression of copper-related genes was determined by real-time PCR in the liver and tumors, and copper and silver levels were measured by FAAS. Intraperitoneal AgNPs treatment beginning on the day of tumor inoculation enhanced mice survival, reduced the proliferation of ascitic EAC cells, and suppressed the activity of HIF1α, TNF-α and VEGFa genes. Topical treatment by the AgNPs, which was started together with the implantation of EAC cells in the thigh, also enhanced mice survival, decreased tumor growth, and repressed genes responsible for neovascularization. The advantages of silver-induced copper deficiency over copper chelators are discussed.


The Features of Copper Metabolism in the Rat Liver during Development.

  • Yulia A Zatulovskaia‎ et al.
  • PloS one‎
  • 2015‎

Strong interest in copper homeostasis is due to the fact that copper is simultaneously a catalytic co-factor of the vital enzymes, a participant in signaling, and a toxic agent provoking oxidative stress. In mammals, during development copper metabolism is conformed to two types. In embryonic type copper metabolism (ETCM), newborns accumulate copper to high level in the liver because its excretion via bile is blocked; and serum copper concentration is low because ceruloplasmin (the main copper-containing protein of plasma) gene expression is repressed. In the late weaning, the ETCM switches to the adult type copper metabolism (ATCM), which is manifested by the unlocking of copper excretion and the induction of ceruloplasmin gene activity. The considerable progress has been made in the understanding of the molecular basis of copper metabolic turnover in the ATCM, but many aspects of the copper homeostasis in the ETCM remain unclear. The aim of this study was to investigate the copper metabolism during transition from the ETCM (up to 12-days-old) to the ATCM in the rats. It was shown that in the liver, copper was accumulated in the nuclei during the first 5 days of life, and then it was re-located to the mitochondria. In parallel with the mitochondria, copper bulk bound with cytosolic metallothionein was increased. All compartments of the liver cells rapidly lost most of their copper on the 13th day of life. In newborns, serum copper concentration was low, and its major fraction was associated with holo-Cp, however, a small portion of copper was bound to extracellular metallothionein and a substance that was slowly eluted during gel-filtration. In adults, serum copper concentration increased by about a factor of 3, while metallothionein-bound copper level decreased by a factor of 2. During development, the expression level of Cp, Sod1, Cox4i1, Atp7b, Ctr1, Ctr2, Cox17, and Ccs genes was significantly increased, and metallothionein was decreased. Atp7a gene's activity was fully repressed. The copper routes in newborns are discussed.


Anti-Influenza Effect of Nanosilver in a Mouse Model.

  • Irina V Kiseleva‎ et al.
  • Vaccines‎
  • 2020‎

The present study assesses copper metabolism of the host organism as a target of antiviral strategy, basing on the "virocell" concept. Silver nanoparticles (AgNPs) were used as a specific active agent because they reduce the level of holo-ceruloplasmin, the main extracellular cuproenzyme. The mouse model of influenza virus A infection was used with two doses: 1 LD50 and 10 LD50. Three treatment regimens were used: Scheme 1-mice were pretreated 4 days before infection and then every day during infection development; Scheme 2-mice were pretreated four days before infection and on the day of virus infection; Scheme 3-virus infection and AgNP treatment started simultaneously, and mice were injected with AgNPs until the end of the experiment. The mice treated by Scheme 1 demonstrated significantly lower mortality, the protection index reached 60-70% at the end of the experiment, and mean lifespan was prolonged. In addition, the treatment of the animals with AgNPs resulted in normalization of the weight dynamics. Despite the amelioration of the infection, AgNP treatment did not influence influenza virus replication. The possibility of using nanosilver as an effective indirectly-acting antiviral drug is discussed.


Case of Early-Onset Parkinson's Disease in a Heterozygous Mutation Carrier of the ATP7B Gene.

  • Ekaterina Y Ilyechova‎ et al.
  • Journal of personalized medicine‎
  • 2019‎

In this paper, we report a clinically proven case of Parkinson's disease (PD) with early onset in a patient who is a heterozygous mutation carrier of ATP7B (the Wilson's disease gene). The patient was observed from 2011 to 2018 in the Center for Neurodegenerative Diseases, Institute of Experimental Medicine (St. Petersburg, Russia). During this period, the patient displayed aggravation of PD clinical symptoms that were accompanied by a decrease in the ceruloplasmin concentration (from 0.33 to 0.27 g/L) and an increase in serum nonceruloplasmin copper, which are typical of the late stages of Wilson's disease. It was found that one of the alleles of exon 14 in the ATP7B gene, which partially codes of the nucleotide-binding domain (N-domain), carries a mutation not previously reported corresponding to Cys1079Gly substitution. Alignment of the ATP7B N-domain amino acid sequences of representative vertebrate species has shown that the Cys at 1079 position is conserved throughout the evolution. Molecular dynamic analysis of a polypeptide with Cys1079Gly substitution showed that the mutation causes profound conformational changes in the N-domain, which could potentially lead to impairment of its functions. The role of ATP7B gene mutations in PD development is discussed.


New silver nanoparticles induce apoptosis-like process in E. coli and interfere with mammalian copper metabolism.

  • Iurii A Orlov‎ et al.
  • International journal of nanomedicine‎
  • 2016‎

Silver nanoparticles (SNPs) are new functional materials that are widely used in biomedical and industrial technologies. Two main features that make SNPs valuable are their strong antibacterial effects and low toxicity to eukaryotes. In this study, SNPs were synthesized using a modified method of reducing the metal ions to their atomic state followed by crystallization. SNPs were characterized by UV/vis spectroscopy, X-ray diffractometry, atomic force microscopy, and transmission electron microscopy (TEM). The SNPs were spherically shaped with an average linear dimension of 20 nm. In aqueous solution, the SNPs were beige-yellow in color, and they formed a black color in bacteria-rich growth media. The toxicity and bioavailability of the SNPs were tested using Escherichia coli cells and C57Bl/6 mice. Although the SNPs displayed bactericidal activity, an E. coli cell strain transformed with an expression plasmid carrying a human CTR1 ectodomain with three motives that bind Cu(II), Cu(I), and Ag(I) demonstrated increased resistance to treatment with SNPs. TEM showed that the SNPs were absorbed by the E. coli cell, and flow cytometry showed that the SNPs induced apoptosis-like death. In mice treated with SNPs (daily intraperitoneal injection of 10 μg SNPs/g body weight over 4 days), the ceruloplasmin (Cp) oxidase activity in the blood serum decreased. However, level of Cp gene expression, the relative contents of the Cp protein in the Golgi complex and in the serum did not change. Treatment with SNPs did not influence the activity of superoxide dismutase 1 in the liver and had no apparent toxic effects in mice. These findings expand the scope of application for the use of new SNPs. The data are discussed in a paradigm, in which the effects of SNPs are caused by the interference of silver ions with copper metabolism.


CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences.

  • Ekaterina Y Ilyechova‎ et al.
  • Cells‎
  • 2019‎

Copper, the highly toxic micronutrient, plays two essential roles: it is a catalytic and structural cofactor for Cu-dependent enzymes, and it acts as a secondary messenger. In the cells, copper is imported by CTR1 (high-affinity copper transporter 1), a transmembrane high-affinity copper importer, and DMT1 (divalent metal transporter). In cytosol, enzyme-specific chaperones receive copper from CTR1 C-terminus and deliver it to their apoenzymes. DMT1 cannot be a donor of catalytic copper because it does not have a cytosol domain which is required for copper transfer to the Cu-chaperons that assist the formation of cuproenzymes. Here, we assume that DMT1 can mediate copper way required for a regulatory copper pool. To verify this hypothesis, we used CRISPR/Cas9 to generate H1299 cell line with CTR1 or DMT1 single knockout (KO) and CTR1/DMT1 double knockout (DKO). To confirm KOs of the genes qRT-PCR were used. Two independent clones for each gene were selected for further studies. In CTR1 KO cells, expression of the DMT1 gene was significantly increased and vice versa. In subcellular compartments of the derived cells, copper concentration dropped, however, in nuclei basal level of copper did not change dramatically. CTR1 KO cells, but not DMT1 KO, demonstrated reduced sensitivity to cisplatin and silver ions, the agents that enter the cell through CTR1. Using single CTR1 and DMT1 KO, we were able to show that both, CTR1 and DMT1, provided the formation of vital intracellular cuproenzymes (SOD1, COX), but not secretory ceruloplasmin. The loss of CTR1 resulted in a decrease in the level of COMMD1, XIAP, and NF-κB. Differently, the DMT1 deficiency induced increase of the COMMD1, HIF1α, and XIAP levels. The possibility of using CTR1 KO and DMT1 KO cells to study homeodynamics of catalytic and signaling copper selectively is discussed.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: