Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Neurochondrin is a neuronal target antigen in autoimmune cerebellar degeneration.

  • Ramona Miske‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2017‎

To report on a novel neuronal target antigen in 3 patients with autoimmune cerebellar degeneration.


Validation of a German version of the Cerebellar Cognitive Affective/ Schmahmann Syndrome Scale: preliminary version and study protocol.

  • Andreas Thieme‎ et al.
  • Neurological research and practice‎
  • 2020‎

Traditionally, cerebellar disorders including ataxias have been associated with deficits in motor control and motor learning. Since the 1980's growing evidence has emerged that cerebellar diseases also impede cognitive and affective processes such as executive and linguistic functions, visuospatial abilities and regulation of emotion and affect. This combination of non-motor symptoms has been named Cerebellar Cognitive Affective/ Schmahmann Syndrome (CCAS). To date, diagnosis relies on non-standardized bedside cognitive examination and, if available, detailed neuropsychological test batteries. Recently, a short and easy applicable bedside test (CCAS Scale) has been developed to screen for CCAS. It has been validated in an US-American cohort of adults with cerebellar disorders and healthy controls. As yet, the CCAS Scale has only been available in American English. We present a German version of the scale and the study protocol of its ongoing validation in a German-speaking patient cohort.


First de novo KCND3 mutation causes severe Kv4.3 channel dysfunction leading to early onset cerebellar ataxia, intellectual disability, oral apraxia and epilepsy.

  • Katrien Smets‎ et al.
  • BMC medical genetics‎
  • 2015‎

Identification of the first de novo mutation in potassium voltage-gated channel, shal-related subfamily, member 3 (KCND3) in a patient with complex early onset cerebellar ataxia in order to expand the genetic and phenotypic spectrum.


Correspondence on "Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a frequent cause of predominant cognitive impairment" by Roux et al.

  • Joohyun Park‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2021‎

No abstract available


Motor training in degenerative spinocerebellar disease: ataxia-specific improvements by intensive physiotherapy and exergames.

  • Matthis Synofzik‎ et al.
  • BioMed research international‎
  • 2014‎

The cerebellum is essentially involved in movement control and plays a critical role in motor learning. It has remained controversial whether patients with degenerative cerebellar disease benefit from high-intensity coordinative training. Moreover, it remains unclear by which training methods and mechanisms these patients might improve their motor performance. Here, we review evidence from different high-intensity training studies in patients with degenerative spinocerebellar disease. These studies demonstrate that high-intensity coordinative training might lead to a significant benefit in patients with degenerative ataxia. This training might be based either on physiotherapy or on whole-body controlled videogames ("exergames"). The benefit shown in these studies is equal to regaining one or more years of natural disease progression. In addition, first case studies indicate that even subjects with advanced neurodegeneration might benefit from such training programs. For both types of training, the observed clinical improvements are paralleled by recoveries in ataxia-specific dysfunctions (e.g., multijoint coordination and dynamic stability). Importantly, for both types of training, the retention of the effects seems to depend on the frequency and continuity of training. Based on these studies, we here present preliminary recommendations for clinical practice, and articulate open questions that might guide future studies on neurorehabilitation in degenerative spinocerebellar disease.


An iPSC model for POLR3A-associated spastic ataxia: Generation of three unrelated patient cell lines.

  • Kalaivani Manibarathi‎ et al.
  • Stem cell research‎
  • 2024‎

Spastic Ataxias (SA) are a group of neurodegenerative disorders with combined pyramidal and cerebellar system affection, leading to an overlap phenotype between Hereditary Spastic Paraplegias (HSP) and Cerebellar Ataxias (CA). Here we describe the generation of iPSCs from three unrelated patients with an ultra-rare subtype of SA caused by compound heterozygous mutations in POLR3A, that encodes the largest subunit of RNA polymerase III. iPSCs were reprogrammed from normal human dermal fibroblasts (NHDFs) using episomal reprogramming with integration-free plasmid vectors: HIHRSi004-A, derived from a 44 year-old male carrying the mutations c.1909 + 22G > A/c.3944_3945delTG, HIHRSi005-A obtained from a 66 year-old male carrying the mutations c.1909 + 22G > A/c.1531C > T, and HIHRSi006-A from a 27 year-old male carrying the mutations c.1909 + 22G > A/c.2472_2472delC (ENST00000372371.8).


STUB1/CHIP mutations cause Gordon Holmes syndrome as part of a widespread multisystemic neurodegeneration: evidence from four novel mutations.

  • Stefanie Nicole Hayer‎ et al.
  • Orphanet journal of rare diseases‎
  • 2017‎

CHIP, the protein encoded by STUB1, is a central component of cellular protein homeostasis and interacts with several key proteins involved in the pathogenesis of manifold neurodegenerative diseases. This gives rise to the hypothesis that mutations in STUB1 might cause a far more multisystemic neurodegenerative phenotype than the previously reported cerebellar ataxia syndrome.


Natural History, Phenotypic Spectrum, and Discriminative Features of Multisystemic RFC1 Disease.

  • Andreas Traschütz‎ et al.
  • Neurology‎
  • 2021‎

To delineate the full phenotypic spectrum, discriminative features, piloting longitudinal progression data, and sample size calculations of replication factor complex subunit 1 (RFC1) repeat expansions, recently identified as causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS).


AP5Z1/SPG48 frequency in autosomal recessive and sporadic spastic paraplegia.

  • Nina A Schlipf‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2014‎

Hereditary spastic paraplegias (HSP) constitute a rare and highly heterogeneous group of neurodegenerative disorders, defined clinically by progressive lower limb spasticity and pyramidal weakness. Autosomal recessive HSP as well as sporadic cases present a significant diagnostic challenge. Mutations in AP5Z1, a gene playing a role in intracellular membrane trafficking, have been recently reported to be associated with spastic paraplegia type 48 (SPG48). Our objective was to determine the relative frequency and clinical relevance of AP5Z1 mutations in a large cohort of 127 HSP patients. We applied a targeted next-generation sequencing approach to analyze all coding exons of the AP5Z1 gene. With the output of high-quality reads and a mean coverage of 51-fold, we demonstrated a robust detection of variants. One 43-year-old female with sporadic complicated paraplegia showed two heterozygous nonsynonymous variants of unknown significance (VUS3; p.[R292W];[(T756I)]). Thus, AP5Z1 gene mutations are rare, at least in Europeans. Due to its low frequency, systematic genetic testing for AP5Z1 mutations is not recommended until larger studies are performed to add further evidence. Our findings demonstrate that amplicon-based deep sequencing is technically feasible and allows a compact molecular characterization of multiple HSP patients with high accuracy.


Abnormal Paraplegin Expression in Swollen Neurites, τ- and α-Synuclein Pathology in a Case of Hereditary Spastic Paraplegia SPG7 with an Ala510Val Mutation.

  • Dietmar R Thal‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Mutations in the SPG7 gene are the most frequent cause of autosomal recessive hereditary spastic paraplegias and spastic ataxias. Ala510Val is the most common SPG7 mutation, with a frequency of up to 1% in the general population. Here we report the clinical, genetic, and neuropathological findings in a homozygous Ala510Val SPG7 case with spastic ataxia. Neuron loss with associated gliosis was found in the inferior olivary nucleus, the dentate nucleus of the cerebellum, the substantia nigra and the basal nucleus of Meynert. Neurofilament and/or paraplegin accumulation was observed in swollen neurites in the cerebellar and cerebral cortex. This case also showed subcortical τ-pathology in an unique distribution pattern largely restricted to the brainstem. α-synuclein containing Lewy bodies (LBs) were observed in the brainstem and the cortex, compatible with a limbic pattern of Braak LB-Disease stage 4. Taken together, this case shows that the spectrum of pathologies in SPG7 can include neuron loss of the dentate nucleus and the inferior olivary nucleus as well as neuritic pathology. The progressive supranuclear palsy-like brainstem predominant pattern of τ pathology and α-synuclein containing Lewy bodies in our SPG7 cases may be either coincidental or related to SPG7 in addition to neuron loss and neuritic pathology.


Blood neurofilament light chain levels are associated with disease progression in a transgenic SCA3 mouse model.

  • David Mengel‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Increased neurofilament light (NfL) protein in biofluids is reflective of neurodegeneration and has gained interest as a biomarker across neurodegenerative diseases. In spinocerebellar ataxia type 3 (SCA3), the most common dominantly inherited ataxia, patients exhibit progressive NfL increases in peripheral blood when becoming symptomatic, remaining stably elevated throughout further disease course. However, progressive NfL changes are not yet validated in relevant preclinical SCA3 animal models, hindering its application as a biomarker during therapeutic development. We used ultra-sensitive single-molecule array (Simoa) to measure blood NfL over disease progression in the YACQ84 mouse, assessing relationships with measures of disease severity including age, CAG repeat size, and magnetic resonance spectroscopy. We show that YACQ84 mice exhibit increased blood NfL, concomitant with ataxia-related motor deficits and correlated with neurometabolite abnormalities. Our findings establish natural history progression of NfL increases in the preclinical YACQ84 mouse, further supporting the utility of blood NfL as a peripheral neurodegeneration biomarker and informing coinciding timelines of different measures of SCA3 pathogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: