2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Cell-Penetrating Peptides Predicted From CASC3, AKIP1, and AHRR Proteins.

  • Ly Porosk‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Peptides can be used as research tools and for diagnostic or therapeutic applications. Peptides, alongside small molecules and antibodies, are used and are gaining further interest as protein-protein interaction (PPI) modulators. Peptides have high target specificity and high affinity, but, unlike small molecule modulators, they are not able to cross the cell membranes to reach their intracellular targets. To overcome this limitation, the special property of the cell-penetrating peptides (CPPs) could benefit their cause. CPPs are a class of peptides that can enter the cells and with them also deliver the attached cargoes. Today, with the advancement of in silico prediction tools and the availability of protein databases, designing new and multifunctional peptides that are able to reach intracellular targets and inhibit certain cellular processes in a very specific manner is reachable. Although there are several efficient CPP sequences already known, the discovery of new CPPs is crucial for the development of efficient delivery methods for both biotechnological and therapeutic applications. In this work, we chose 10 human nuclear proteins from which we predicted new potential CPP sequences by using three different CPP predictors: cell-penetrating peptide prediction tool, CellPPD, and SkipCPP-Pred. From each protein, one predicted CPP sequence was synthesized and its internalization into cells was assessed. Out of the tested sequences, three peptides displayed features characteristic to CPPs. These peptides and also the predicted peptide sequences could be used to design and modify new CPPs. In this work, we show that we can use protein sequences as input for generating new peptides with cell internalization properties. Three new CPPs, AHRR8-24, CASC3251-264, and AKIP127-37, can be further used for the delivery of other cargoes or designed into multifunctional peptides with capability of internalizing cells.


Aggregation Limiting Cell-Penetrating Peptides Derived from Protein Signal Sequences.

  • Ly Porosk‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Alzheimer's disease (AD) is the most common neurodegenerative disease (ND) and the leading cause of dementia. It is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in the biological alterations and the causes of the disease. One of the hallmarks of the AD is the progression of plaques of aggregated amyloid-β (Aβ) or neurofibrillary tangles of Tau. Currently there is no efficient treatment for the AD. Nevertheless, several breakthroughs in revealing the mechanisms behind progression of the AD have led to the discovery of possible therapeutic targets. Some of these include the reduction in inflammation in the brain, and, although highly debated, limiting of the aggregation of the Aβ. In this work we show that similarly to the Neural cell adhesion molecule 1 (NCAM1) signal sequence, other Aβ interacting protein sequences, especially derived from Transthyretin, can be used successfully to reduce or target the amyloid aggregation/aggregates in vitro. The modified signal peptides with cell-penetrating properties reduce the Aβ aggregation and are predicted to have anti-inflammatory properties. Furthermore, we show that by expressing the Aβ-EGFP fusion protein, we can efficiently assess the potential for reduction in aggregation, and the CPP properties of peptides in mammalian cells.


Peptide-ligand binding modeling of siRNA with cell-penetrating peptides.

  • Alfonso T García-Sosa‎ et al.
  • BioMed research international‎
  • 2014‎

The binding affinity of a series of cell-penetrating peptides (CPP) was modeled through docking and making use of the number of intermolecular hydrogen bonds, lipophilic contacts, and the number of sp3 molecular orbital hybridization carbons. The new ranking of the peptides is consistent with the experimentally determined efficiency in the downregulation of luciferase activity, which includes the peptides' ability to bind and deliver the siRNA into the cell. The predicted structures of the complexes of peptides to siRNA were stable throughout 10 ns long, explicit water molecular dynamics simulations. The stability and binding affinity of peptide-siRNA complexes was related to the sidechains and modifications of the CPPs, with the stearyl and quinoline groups improving affinity and stability. The reranking of the peptides docked to siRNA, together with explicit water molecular dynamics simulations, appears to be well suited to describe and predict the interaction of CPPs with siRNA.


The Formation of Nanoparticles between Small Interfering RNA and Amphipathic Cell-Penetrating Peptides.

  • Ly Pärnaste‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2017‎

Cell-penetrating peptides (CPPs) are delivery vectors widely used to aid the transport of biologically active cargoes to intracellular targets. These cargoes include small interfering RNAs (siRNA) that are not naturally internalized by cells. Elucidating the complexities behind the formation of CPP and cargo complexes is crucial for understanding the processes related to their delivery. In this study, we used modified analogs of the CPP transportan10 and investigated the binding properties of these CPPs to siRNA, the formation parameters of the CPP/siRNA complexes, and their stabiliy to enzymatic degradation. We conclude that the pH dependent change of the net charge of the CPP may very well be the key factor leading to the high delivery efficiency and the optimal binding strength between CPPs to siRNAs, while the hydrophobicity, secondary structure of the CPP, and the positions of the positive charges are responsible for the stability of the CPP/siRNA particles. Also, CPPs with distinct hydrophobic and hydrophilic regions may assemble into nanoparticles that could be described as core-shell formulations.


Tumor gene therapy by systemic delivery of plasmid DNA with cell-penetrating peptides.

  • Kadri Künnapuu‎ et al.
  • FASEB bioAdvances‎
  • 2019‎

Gene therapy is a prospective strategy for treating cancer. However, finding efficient and tumor-specific gene delivery vectors remains an issue. Tumor responsive cell-penetrating peptide (CPP) PepFect144 (PF144) has previously been shown to deliver reporter gene encoding plasmid DNA specifically into tumors upon systemic administration, but its capability to reduce tumor growth has not yet been evaluated. Here, we study the potential of PF144-based anti-angiogenic gene delivery to inhibit tumor growth by silencing vascular endothelial growth factor (VEGF) expression in tumors. This approach led to the inhibition of tumor growth in both the HT1080 fibrosarcoma model and orthotopic 4T1 breast tumor model. We additionally saw that the addition of αvβ3 integrin targeting did not further improve the tumor sensitive CPPs. Our results suggest that activatable cell-penetrating peptide PF144 is a promising nonviral plasmid DNA delivery vector for cancer treatment.


Magnetic Nanoparticle Assisted Self-assembly of Cell Penetrating Peptides-Oligonucleotides Complexes for Gene Delivery.

  • Moataz Dowaidar‎ et al.
  • Scientific reports‎
  • 2017‎

Magnetic nanoparticles (MNPs, Fe3O4) incorporated into the complexes of cell penetrating peptides (CPPs)-oligonucleotides (ONs) promoted the cell transfection for plasmid transfection, splice correction, and gene silencing efficiencies. Six types of cell penetrating peptides (CPPs; PeptFect220 (denoted PF220), PF221, PF222, PF223, PF224 and PF14) and three types of gene therapeutic agents (plasmid (pGL3), splicing correcting oligonucleotides (SCO), and small interfering RNA (siRNA) were investigated. Magnetic nanoparticles incorporated into the complexes of CPPs-pGL3, CPPs-SCO, and CPPs-siRNA showed high cell biocompatibility and efficiently transfected the investigated cells with pGL3, SCO, and siRNA, respectively. Gene transfer vectors formed among PF14, SCO, and MNPs (PF14-SCO-MNPs) showed a superior transfection efficiency (up to 4-fold) compared to the noncovalent PF14-SCO complex, which was previously reported with a higher efficiency compared to commercial vector called Lipofectamine™2000. The high transfection efficiency of the new complexes (CPPs-SCO-MNPs) may be attributed to the morphology, low cytotoxicity, and the synergistic effect of MNPs and CPPs. PF14-pDNA-MNPs is an efficient complex for in vivo gene delivery upon systemic administration. The conjugation of CPPs-ONs with inorganic magnetic nanoparticles (Fe3O4) may open new venues for selective and efficient gene therapy.


A Method for Using Cell-Penetrating Peptides for Loading Plasmid DNA into Secreted Extracellular Vesicles.

  • Jekaterina Nebogatova‎ et al.
  • Biomolecules‎
  • 2023‎

The low bioavailability and high toxicity of plasmid DNA (pDNA)-based therapeutics pose challenges for their in vivo application. Extracellular vesicles (EVs) have great potential to overcome these limitations, as they are biocompatible native cargo carriers. Various methods for loading pDNA into EVs, including electroporation, sonication, and co-incubation, have been previously investigated, but their success has been questionable. In this study, we report a unique method for loading EVs with pDNA through transient transfection using cell-penetrating peptides (CPPs). With this method, we found a 104-fold increase in the expression levels of the luciferase reporter protein in recipient cells compared to the untreated cells. These data point to the high transfection efficacy and bioavailability of the delivered encapsulated nucleic acid. Furthermore, the in vivo experimental data indicate that the use of pDNA-loaded EVs as native delivery vehicles reduces the toxic effects associated with traditional nucleic acid (NA) delivery and treatment.


Penetration without cells: membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles.

  • Pille Säälik‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2011‎

The cellular internalization of cell-penetrating peptides (CPPs) is proposed to take place by both endocytic processes and by a direct translocation across the plasma membrane. So far only scarce data is available about what determines the choice between the two uptake routes, or the proportion of used pathways when both are active simultaneously. Furthermore, the mechanism(s) of membrane penetration by peptides is itself still a matter of debate. We have introduced the giant plasma membrane vesicles (GPMVs) to study the interaction of six well-described CPPs (fluorescently labeled nona-arginine, Tat peptide, Penetratin, MAP, Transportan and TP10) in a model system of native plasma membrane without the interference of endocytic processes. The membranes of GPMVs are shown to segregate into liquid-ordered and liquid-disordered phases at low temperatures and we demonstrate here by confocal microscopy that amphipathic CPPs preferentially associate with liquid-disordered membrane areas. Moreover, all tested CPPs accumulate into the lumen of GPMVs both at ambient and low temperature. The uncharged control peptide and dextran, in contrary, do not translocate from the medium into the lumen of vesicles. The absence of energy-dependent cellular processes and the impermeability to hydrophilic macromolecules makes the GPMVs a useful model to study the translocation of CPPs across the plasma membrane in conditions lacking endocytosis.


Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins.

  • Janely Pae‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2014‎

Despite the extensive research in the field of CPPs' cell entry the exact mechanisms underlying their cellular uptake and the role of involved cell surface molecules in the internalization process have remained controversial. The present study focused on the interactions between CPPs and plasma membrane compounds using giant plasma membrane vesicles (GPMVs). GPMVs have shown to be a suitable model to study the translocation of CPPs across the plasma membrane in conditions lacking endocytosis. Our results show that higher cholesterol content and tighter packing of membrane predominantly reduce the accumulation of transportan, TP10 and model amphipathic peptide (MAP) in vesicles, indicating that the internalization of CPPs takes place preferentially via the more dynamic membrane regions. The partial digestion of membrane proteins from GPMVs' surface, on the other hand, drastically reduced the accumulation of nona-arginine and Tat peptide into vesicles, suggesting that proteins play a crucial role in the uptake of arginine-rich CPPs.


NickFect type of cell-penetrating peptides present enhanced efficiency for microRNA-146a delivery into dendritic cells and during skin inflammation.

  • Gemma Carreras-Badosa‎ et al.
  • Biomaterials‎
  • 2020‎

MicroRNAs (miRNAs) are post-transcriptional gene expression regulators with potential therapeutic applications. miR-146a is a negative regulator of inflammatory processes in both tissue-resident and specialized immune cells and may therefore have therapeutic effect in inflammatory skin diseases. PepFect (PF) and NickFect (NF) type of cell-penetrating peptides (CPPs) have previously been shown to deliver miRNA mimics and/or siRNAs into cell cultures and in vivo. Here, we first demonstrate that selected PF- and NF-type of CPPs support delivery of fluorescent labelled miRNA mimics into keratinocytes (KCs) and dendritic cells (DCs). Second, we show that both PF- and NF-miR-146a nanocomplexes were equally effective in KCs, while NFs were more efficient in DCs as assessed by downregulation of miR-146a-influenced genes. None of miRNA nanocomplexes with the tested CPPs influenced the viability of KCs and DCs nor caused activation of DCs according to CD86 and CD83 markers. Transmission electron microscopy analysis with Nanogold-labelled miR-146a mimics and assessment of endocytic trafficking pathways revealed endocytosis as an active route of delivery in both KCs and DCs for all tested CPPs. However, consistent with the higher efficiency, NF-delivered miR-146a was detected more often outside endosomes in DCs. Finally, pre-injection of NF71:miR-146a nanocomplexes was confirmed to suppress inflammatory responses in a mouse model of irritant contact dermatitis as shown by reduced ear swelling response and downregulation of pro-inflammatory cytokines, including IL-6, IL-1β, IL-33 and TNF-α. In conclusion, NF71 efficiently delivers miRNA mimics into KCs as well as DCs, and therefore may have advantage in therapeutic delivery of miRNAs in case of inflammatory skin diseases.


Transcriptional Profiling Reveals Ribosome Biogenesis, Microtubule Dynamics and Expression of Specific lncRNAs to be Part of a Common Response to Cell-Penetrating Peptides.

  • Tomas Venit‎ et al.
  • Biomolecules‎
  • 2020‎

Cell-penetrating peptides (CPPs) are short peptides that are able to efficiently penetrate cellular lipid bilayers. Although CPPs have been used as carriers in conjugation with certain cargos to target specific genes and pathways, how rationally designed CPPs per se affect global gene expression has not been investigated. Therefore, following time course treatments with 4 CPPs-penetratin, PepFect14, mtCPP1 and TP10, HeLa cells were transcriptionally profiled by RNA sequencing. Results from these analyses showed a time-dependent response to different CPPs, with specific sets of genes related to ribosome biogenesis, microtubule dynamics and long-noncoding RNAs being differentially expressed compared to untreated controls. By using an image-based high content phenotypic profiling platform we confirmed that differential gene expression in CPP-treated HeLa cells strongly correlates with changes in cellular phenotypes such as increased nucleolar size and dispersed microtubules, compatible with altered ribosome biogenesis and cell growth. Altogether these results suggest that cells respond to different cell penetrating peptides by alteration of specific sets of genes, which are possibly part of the common response to such stimulus.


Role of autophagy in cell-penetrating peptide transfection model.

  • Moataz Dowaidar‎ et al.
  • Scientific reports‎
  • 2017‎

Cell-penetrating peptides (CPPs) uptake mechanism is still in need of more clarification to have a better understanding of their action in the mediation of oligonucleotide transfection. In this study, the effect on early events (1 h treatment) in transfection by PepFect14 (PF14), with or without oligonucleotide cargo on gene expression, in HeLa cells, have been investigated. The RNA expression profile was characterized by RNA sequencing and confirmed by qPCR analysis. The gene regulations were then related to the biological processes by the study of signaling pathways that showed the induction of autophagy-related genes in early transfection. A ligand library interfering with the detected intracellular pathways showed concentration-dependent effects on the transfection efficiency of splice correction oligonucleotide complexed with PepFect14, proving that the autophagy process is induced upon the uptake of complexes. Finally, the autophagy induction and colocalization with autophagosomes have been confirmed by confocal microscopy and transmission electron microscopy. We conclude that autophagy, an inherent cellular response process, is triggered by the cellular uptake of CPP-based transfection system. This finding opens novel possibilities to use autophagy modifiers in future gene therapy.


Cell-Penetrating Peptide and siRNA-Mediated Therapeutic Effects on Endometriosis and Cancer In Vitro Models.

  • Kristina Kiisholts‎ et al.
  • Pharmaceutics‎
  • 2021‎

Gene therapy is a powerful tool for the development of new treatment strategies for various conditions, by aiming to transport biologically active nucleic acids into diseased cells. To achieve that goal, we used highly potential delivery vectors, cell-penetrating peptides (CPPs), as oligonucleotide carriers for the development of a therapeutic approach for endometriosis and cancer. Despite marked differences, both of these conditions still exhibit similarities, like excessive, uncoordinated, and autonomous cellular proliferation and invasion, accompanied by overlapping gene expression patterns. Thus, in the current study, we investigated the therapeutic effects of CPP and siRNA nanoparticles using in vitro models of benign endometriosis and malignant glioblastoma. We demonstrated that CPPs PepFect6 and NickFect70 are highly effective in transfecting cell lines, primary cell cultures, and three-dimensional spheroids. CPP nanoparticles are capable of inducing siRNA-specific knockdown of therapeutic genes, ribonucleotide reductase subunit M2 (RRM2), and vascular endothelial growth factor (VEGF), which results in the reduction of in vitro cellular proliferation, invasion, and migration. In addition, we proved that it is possible to achieve synergistic suppression of endometriosis cellular proliferation and invasion by combining gene therapy and hormonal treatment approaches by co-administering CPP/siRNA nanoparticles together with the endometriosis-drug danazol. We suggest a novel target, RRM2, for endometriosis therapy and as a proof-of-concept, we propose a CPP-mediated gene therapy approach for endometriosis and cancer.


Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide.

  • Carmine Pasquale Cerrato‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2017‎

Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs) superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs), exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP) internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.


Effect of small molecule signaling in PepFect14 transfection.

  • Maxime Gestin‎ et al.
  • PloS one‎
  • 2020‎

Cell-penetrating peptides can be used to deliver oligonucleotide-based cargoes into cells. Previous studies have shown that the use of small molecule drugs could be an efficient method to increase the efficacy of delivery of oligonucleotides by cell-penetrating peptides either as targeting agents that can be used in formulation with the cell-penetrating peptide and its cargo or as cell signaling modulators that facilitates the cellular uptake of the treatment. This study presents two aims. The first aim is the identification of small molecule drugs that would induce a synergic effect on the transfection of splice correcting oligonucleotides assisted by PepFect14. The second aim is to identify the mechanisms behind the effect of small molecule drugs modulation of cell-penetrating peptide assisted transfection of oligonucleotides. Through an optimized, high-throughput luciferase assay for short oligonucleotide delivery using cell-penetrating peptides, and the simultaneous addition of a small molecule drug library, we show that three small molecule drugs (MPEP, VU0357121 and Ciproxifan) induced an increase in the transfection efficacy of PepFect14 in complex with a short single-stranded oligonucleotide in HeLa pLuc705 cells. These three drugs are described in the literature to be highly specific for their respective target receptors. However, none of those receptors are expressed in our cell line, indicating a yet non-described pathway of action for these small molecules. We show that the indicated small molecules, without interfering with the particles formed by PepFect14 and the oligonucleotide, interfere via still unidentified interactions in cell signaling, leading to an up-regulation of endocytosis and a higher efficacy in the delivery of short splice correcting oligonucleotides in complex with PepFect14.


Peptide nanoparticle delivery of charge-neutral splice-switching morpholino oligonucleotides.

  • Peter Järver‎ et al.
  • Nucleic acid therapeutics‎
  • 2015‎

Oligonucleotide analogs have provided novel therapeutics targeting various disorders. However, their poor cellular uptake remains a major obstacle for their clinical development. Negatively charged oligonucleotides, such as 2'-O-Methyl RNA and locked nucleic acids have in recent years been delivered successfully into cells through complex formation with cationic polymers, peptides, liposomes, or similar nanoparticle delivery systems. However, due to the lack of electrostatic interactions, this promising delivery method has been unsuccessful to date using charge-neutral oligonucleotide analogs. We show here that lipid-functionalized cell-penetrating peptides can be efficiently exploited for cellular transfection of the charge-neutral oligonucleotide analog phosphorodiamidate morpholino. The lipopeptides form complexes with splice-switching phosphorodiamidate morpholino oligonucleotide and can be delivered into clinically relevant cell lines that are otherwise difficult to transfect while retaining biological activity. To our knowledge, this is the first study to show delivery through complex formation of biologically active charge-neutral oligonucleotides by cationic peptides.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: