Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 156 papers

The Role of Deoxycytidine Kinase (dCK) in Radiation-Induced Cell Death.

  • Rui Zhong‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Deoxycytidine kinase (dCK) is a key enzyme in deoxyribonucleoside salvage and the anti-tumor activity for many nucleoside analogs. dCK is activated in response to ionizing radiation (IR)-induced DNA damage and it is phosphorylated on Serine 74 by the Ataxia-Telangiectasia Mutated (ATM) kinase in order to activate the cell cycle G2/M checkpoint. However, whether dCK plays a role in radiation-induced cell death is less clear. In this study, we genetically modified dCK expression by knocking down or expressing a WT (wild-type), S74A (abrogates phosphorylation) and S74E (mimics phosphorylation) of dCK. We found that dCK could decrease IR-induced total cell death and apoptosis. Moreover, dCK increased IR-induced autophagy and dCK-S74 is required for it. Western blotting showed that the ratio of phospho-Akt/Akt, phospho-mTOR/mTOR, phospho-P70S6K/P70S6K significantly decreased in dCK-WT and dCK-S74E cells than that in dCK-S74A cells following IR treatment. Reciprocal experiment by co-immunoprecipitation showed that mTOR can interact with wild-type dCK. IR increased polyploidy and decreased G2/M arrest in dCK knock-down cells as compared with control cells. Taken together, phosphorylated and activated dCK can inhibit IR-induced cell death including apoptosis and mitotic catastrophe, and promote IR-induced autophagy through PI3K/Akt/mTOR pathway.


Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death.

  • Luxi Sun‎ et al.
  • Nucleic acids research‎
  • 2015‎

Cellular DNA is organized into chromosomes and capped by a unique nucleoprotein structure, the telomere. Both oxidative stress and telomere shortening/dysfunction cause aging-related degenerative pathologies and increase cancer risk. However, a direct connection between oxidative damage to telomeric DNA, comprising <1% of the genome, and telomere dysfunction has not been established. By fusing the KillerRed chromophore with the telomere repeat binding factor 1, TRF1, we developed a novel approach to generate localized damage to telomere DNA and to monitor the real time damage response at the single telomere level. We found that DNA damage at long telomeres in U2OS cells is not repaired efficiently compared to DNA damage in non-telomeric regions of the same length in heterochromatin. Telomeric DNA damage shortens the average length of telomeres and leads to cell senescence in HeLa cells and cell death in HeLa, U2OS and IMR90 cells, when DNA damage at non-telomeric regions is undetectable. Telomere-specific damage induces chromosomal aberrations, including chromatid telomere loss and telomere associations, distinct from the damage induced by ionizing irradiation. Taken together, our results demonstrate that oxidative damage induces telomere dysfunction and underline the importance of maintaining telomere integrity upon oxidative damage.


BMPR2 promotes fatty acid oxidation and protects white adipocytes from cell death in mice.

  • Shuwen Qian‎ et al.
  • Communications biology‎
  • 2020‎

Adipocyte cell death is pathologically involved in both obesity and lipodystrophy. Inflammation and pro-inflammatory cytokines are generally regarded as inducers for adipocyte apoptosis, but whether some innate defects affect their susceptibility to cell death has not been extensively studied. Here, we found bone morphogenetic protein receptor type 2 (BMPR2) knockout adipocytes were prone to cell death, which involved both apoptosis and pyroptosis. BMPR2 deficiency in adipocytes inhibited phosphorylation of perilipin, a lipid-droplet-coating protein, and impaired lipolysis when stimulated by tumor necrosis factor (TNFα), which lead to failure of fatty acid oxidation and oxidative phosphorylation. In addition, impaired lipolysis was associated with mitochondria-mediated apoptosis and pyroptosis as well as elevated inflammation. These results suggest that BMPR2 is important for maintaining the functional integrity of adipocytes and their ability to survive when interacting with inflammatory factors, which may explain why adipocytes among individuals show discrepancy for death responses in inflammatory settings.


Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death.

  • Shreyasi Choudhury‎ et al.
  • Molecular neurodegeneration‎
  • 2015‎

Axonal injury of the optic nerve (ON) is involved in various ocular diseases, such as glaucoma and traumatic optic neuropathy, which leads to apoptotic death of retinal ganglion cells (RGCs) and loss of vision. Caspases have been implicated in RGC pathogenesis. However, the role of caspase-7, a functionally unique caspase, in ON injury and RGC apoptosis has not been reported previously. The purpose of this study is to evaluate the role of caspase-7 in ON injury-induced RGC apoptosis.


Role of C/EBP homologous protein in retinal ganglion cell death after ischemia/reperfusion injury.

  • Sonali Nashine‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2014‎

To investigate the role of C/EBP homologous protein (CHOP), a proapoptotic protein, and the unfolded protein response (UPR) marker that is involved in endoplasmic reticulum (ER) stress-mediated apoptosis in mouse retinal ganglion cell (RGC) death following ischemia/reperfusion (I/R) injury.


Mesenchymal stem cell-secreted prostaglandin E2 ameliorates acute liver failure via attenuation of cell death and regulation of macrophage polarization.

  • Jinglin Wang‎ et al.
  • Stem cell research & therapy‎
  • 2021‎

Acute liver failure (ALF) is an acute inflammatory liver disease with high mortality. Previous preclinical and clinical trials have confirmed that mesenchymal stem cell (MSC) is a promising therapeutic approach; however, the effect is not satisfied as the underlying molecular mechanisms of MSC in treating ALF remain unclear.


Combined treatment with emodin and a telomerase inhibitor induces significant telomere damage/dysfunction and cell death.

  • Rui Liu‎ et al.
  • Cell death & disease‎
  • 2019‎

G-quadruplex telomeric secondary structures represent natural replication fork barriers and must be resolved to permit efficient replication. Stabilization of telomeric G4 leads to telomere dysfunctions demonstrated by telomere shortening or damage, resulting in genome instability and apoptosis. Chemical compounds targeting G4 structures have been reported to induce telomere disturbance and tumor suppression. Here, virtual screening was performed in a natural compound library using PyRx to identify novel G4 ligands. Emodin was identified as one of the best candidates, showing a great G4-binding potential. Subsequently, we confirmed that emodin could stabilize G4 structures in vitro and trigger telomere dysfunctions including fragile telomeres, telomere loss, and telomeric DNA damage. However, this telomere disturbance could be rescued by subsequent elevation of telomerase activity; in contrast, when we treated the cells with the telomerase inhibitor BIBR1532 upon emodin treatment, permanent telomere disturbance and obvious growth inhibition of 4T1-cell xenograft tumors were observed in mice. Taken together, our results show for the first time that emodin-induced telomeric DNA damage can upregulate telomerase activity, which may weaken its anticancer effect. The combined use of emodin and the telomerase inhibitor synergistically induced telomere dysfunction and inhibited tumor generation.


Aurora kinase a suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells.

  • Ling-Zhi Xu‎ et al.
  • Oncotarget‎
  • 2014‎

Aberrant Aur-A signaling is associated with tumor malignant behaviors. However, its involvement in tumor metabolic stress is not fully elucidated. In the present study, prolonged nutrient deprivation was conducted into breast cancer cells to mimic metabolic stress in tumors. In these cells, autophagy was induced, leading to caspase-independent cell death, which was blocked by either targeted knockdown of autophagic gene ATG5 or autophagy inhibitor 3-Methyladenine (3-MA). Aur-A overexpression mediated resistance to autophagic cell death and promoted breast cancer cells survival when exposed to metabolic stress. Moreover, we provided evidence that Aur-A suppressed autophagy in a kinase-dependent manner. Furthermore, we revealed that Aur-A overexpression enhanced the mammalian target of rapamycin (mTOR) activity under metabolic stress by inhibiting glycogen synthase kinase 3β (GSK3β). Inhibition of mTOR activity by rapamycin sensitized Aur-A-overexpressed breast cancer cells to metabolic stress-induced cell death. Consistently, we presented an inverse correlation between Aur-A expression (high) and autophagic levels (low) in clinical breast cancer samples. In conclusion, our data provided a novel insight into the cyto-protective role of Aur-A against metabolic stress by suppressing autophagic cell death, which might help to develop alternative cell death avenues for breast cancer therapy.


Carbon Ion Induces Cell Death and G2/M Arrest Through pRb/E2F1Chk2/Cdc2 Signaling Pathway in X-ray Resistant B16F10 Melanoma Cells.

  • Sha Li‎ et al.
  • Dose-response : a publication of International Hormesis Society‎
  • 2022‎

To explore the effect of high-LET carbon ion (C-ion) radiation on malignant melanoma, we systematically compared the radiobiological effects of C-ion with that of X-rays in B16F10 melanoma cells. Results showed that C-ion radiation statistically inhibited clonogenic survival capacity of B16F10 melanoma cells. The RBE was 3.7 at D 10 levels, meaning 1.0 Gy C-ion should cause the same biological effect as ≥ 3.0 Gy X-rays. In addition, we also observed a stronger proliferation-inhibiting and higher ratio of cell apoptosis and necrosis in B16F10 cells treated with C-ion than X-rays. Moreover, C-ion radiation exhibited stronger and long-lasting G2/M arrest than X-rays. As an underlying mechanism, we speculated that C-ion radiation-induced G2/M block through activating pRb/E2F1/Chk2 pathway. With these results, we highlighted the potential of C-ion in treatment of cutaneous melanoma. Further, in vitro experiments as well as clinical trials are needed to further evaluate the effect of carbon ion radiotherapy in melanoma.


Rapid Birth or Death of Centromeres on Fragmented Chromosomes in Maize.

  • Yalin Liu‎ et al.
  • The Plant cell‎
  • 2020‎

Comparative genomics has revealed common occurrences in karyotype evolution such as chromosomal end-to-end fusions and insertions of one chromosome into another near the centromere, as well as many cases of de novo centromeres that generate positional polymorphisms. However, how rearrangements such as dicentrics and acentrics persist without being destroyed or lost remains unclear. Here, we sought experimental evidence for the frequency and timeframe for inactivation and de novo formation of centromeres in maize (Zea mays). The pollen from plants with supernumerary B chromosomes was gamma-irradiated and then applied to normal maize silks of a line without B chromosomes. In ∼8,000 first-generation seedlings, we found many B-A translocations, centromere expansions, and ring chromosomes. We also found many dicentric chromosomes, but a fraction of these show only a single primary constriction, which suggests inactivation of one centromere. Chromosomal fragments were found without canonical centromere sequences, revealing de novo centromere formation over unique sequences; these were validated by immunolocalization with Thr133-phosphorylated histone H2A, a marker of active centromeres, and chromatin immunoprecipitation-sequencing with the CENH3 antibody. These results illustrate the regular occurrence of centromere birth and death after chromosomal rearrangement during a narrow window of one to potentially only a few cell cycles for the rearranged chromosomes to be recognized in this experimental regime.


Novel Therapy for Glioblastoma Multiforme by Restoring LRRC4 in Tumor Cells: LRRC4 Inhibits Tumor-Infitrating Regulatory T Cells by Cytokine and Programmed Cell Death 1-Containing Exosomes.

  • Peiyao Li‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Glioblastoma multiforme (GBM) is a heterogeneous malignant brain tumor, the pathological incidence of which induces the accumulation of tumor-infiltrating lymphocytes (TILs). As a tumor suppressor gene, LRRC4 is absent in GBM cells. Here, we report that the recovery of LRRC4 in GBM cells inhibited the infiltration of tumor-infiltrating regulatory T cells (Ti-Treg), promoted the expansion of tumor-infiltrating effector T (Ti-Teff) cells and CD4+CCR4+ T cells, and enhanced the chemotaxis of CD4+CCR4+ T cells in the GBM immune microenvironment. LRRC4 was not transferred into TILs from GBM cells through exosomes but mainly exerted its inhibiting function on Ti-Treg cell expansion by directly promoting cytokine secretion. GBM cell-derived exosomes (cytokine-free and programmed cell death 1 containing) also contributed to the modulation of LRRC4 on Ti-Treg, Ti-Teff, and CD4+CCR4+ T cells. In GBM cells, LRRC4 directly bound to phosphoinositide-dependent protein kinase 1 (PDPK1), phosphorylated IKKβser181, facilitated NF-κB activation, and promoted the secretion of interleukin-6 (IL-6), CCL2, and interferon gamma. In addition, HSP90 was required to maintain the interaction between LRRC4 and PDPK1. However, the inhibition of Ti-Treg cell expansion and promotion of CD4+CCR4+ T cell chemotaxis by LRRC4 could be blocked by anti-IL-6 antibody or anti-CCL2 antibody, respectively. miR-101 is a suppressor gene in GBM. Our previous studies have shown that EZH2, EED, and DNMT3A are direct targets of miR-101. Here, we showed that miR-101 reversed the hypermethylation of the LRRC4 promoter and induced the re-expression of LRRC4 in GBM cells by directly targeting EZH2, EED, and DNMT3A. Our results reveal a novel mechanism underlying GBM microenvironment and provide a new therapeutic strategy using re-expression of LRRC4 in GBM cells to create a permissive intratumoral environment.


Structural analyses of human ryanodine receptor type 2 channels reveal the mechanisms for sudden cardiac death and treatment.

  • Marco C Miotto‎ et al.
  • Science advances‎
  • 2022‎

Ryanodine receptor type 2 (RyR2) mutations have been linked to an inherited form of exercise-induced sudden cardiac death called catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT results from stress-induced sarcoplasmic reticular Ca2+ leak via the mutant RyR2 channels during diastole. We present atomic models of human wild-type (WT) RyR2 and the CPVT mutant RyR2-R2474S determined by cryo-electron microscopy with overall resolutions in the range of 2.6 to 3.6 Å, and reaching local resolutions of 2.25 Å, unprecedented for RyR2 channels. Under nonactivating conditions, the RyR2-R2474S channel is in a "primed" state between the closed and open states of WT RyR2, rendering it more sensitive to activation that results in stress-induced Ca2+ leak. The Rycal drug ARM210 binds to RyR2-R2474S, reverting the primed state toward the closed state. Together, these studies provide a mechanism for CPVT and for the therapeutic actions of ARM210.


ACSL4 contributes to sevoflurane-induced ferroptotic neuronal death in SH-SY5Y cells via the 5' AMP-activated protein kinase/mammalian target of rapamycin pathway.

  • Lei Cheng‎ et al.
  • Annals of translational medicine‎
  • 2021‎

Acyl-CoA synthetase long chain family member 4 (ACSL4) has been reported to serve as a major player in the progress of ferroptosis in various diseases. Nevertheless, the functional role and mechanism of ACSL4 in sevoflurane (sev)-induced neuronal death has never been elucidated.


The Two-Pore Domain Potassium Channel TREK-1 Promotes Blood-Brain Barrier Breakdown and Exacerbates Neuronal Death After Focal Cerebral Ischemia in Mice.

  • Xiaolong Zheng‎ et al.
  • Molecular neurobiology‎
  • 2022‎

Earlier studies have shown the neuroprotective role of TWIK-related K+ channel 1 (TREK-1) in global cerebral and spinal cord ischemia, while its function in focal cerebral ischemia has long been debated. This study used TREK-1-deficient mice to directly investigate the role of TREK-1 after focal cerebral ischemia. First, immunofluorescence assays in the mouse cerebral cortex indicated that TREK-1 expression was mostly abundant in astrocytes, neurons, and oligodendrocyte precursor cells but was low in myelinating oligodendrocytes, microglia, or endothelial cells. TREK-1 deficiency did not affect brain weight and morphology or the number of neurons, astrocytes, or microglia but did increase glial fibrillary acidic protein (GFAP) expression in astrocytes of the cerebral cortex. The anatomy of the major cerebral vasculature, number and structure of brain micro blood vessels, and blood-brain barrier integrity were unaltered. Next, mice underwent 60 min of focal cerebral ischemia and 72 h of reperfusion induced by the intraluminal suture method. TREK-1-deficient mice showed less neuronal death, smaller infarction size, milder blood-brain barrier (BBB) breakdown, reduced immune cell invasion, and better neurological function. Finally, the specific pharmacological inhibition of TREK-1 also decreased infarction size and improved neurological function. These results demonstrated that TREK-1 might play a detrimental rather than beneficial role in focal cerebral ischemia, and inhibition of TREK-1 would be a strategy to treat ischemic stroke in the clinic.


LAGE3 promoted cell proliferation, migration, and invasion and inhibited cell apoptosis of hepatocellular carcinoma by facilitating the JNK and ERK signaling pathway.

  • Ying Xing‎ et al.
  • Cellular & molecular biology letters‎
  • 2021‎

Hepatocellular carcinoma (HCC) is now the second leading cause of cancer death worldwide and lacks effectual therapy due to its high rate of tumor recurrence and metastasis. The aim of this study was to investigate the effects of L antigen family member 3 (LAGE3, a member of the LAGE gene family involved in positive transcription) on the progression of HCC.


Omarigliptin inhibits brain cell ferroptosis after intracerebral hemorrhage.

  • Yan Zhang‎ et al.
  • Scientific reports‎
  • 2023‎

Intracerebral hemorrhage (ICH) is a disastrous disease without effective treatment. An extensive body of evidence indicate that neuronal ferroptosis is a key contributor to neurological disfunctions after ICH. Omarigliptin, also known as MK3102, is an anti-diabetic drug that inhibits dipeptidyl peptidase (DPP4). Recently, MK3102 is reported to exhibit anti-ferroptosis and anti-oxidative effects in different pathological conditions. However, the anti-ferroptosis ability of MK3102 in ICH injury is unknown. Hemin was administrated to model ICH injury in cultured primary cortical neurons, and collagenase VII was used to induce ICH in C57BL/6 mice. MK3102 was administered after ICH. Cell Counting Kit-8 (CCK-8) was applied to detect cell viability. Neurological functions were assessed through the Focal deficits neurological scores and corner test. HE and TUNEL staining was applied to evaluate brain damage areas and cell death, respectively. Ferroptosis was evaluated in cultured neurons by fluorescent probe DCFH-DA, FerroOrange, Liperfluo and immunofluorescence of GPX4, AIFM2 and FACL4. Perls staining was performed to visualize Fe3+ deposition. Ferroptosis-related proteins in mouse brain were measured by immunohistochemistry and western blotting. MK3102 reduced the neurotoxicity of hemin in cultured primary cortical neurons. It improved neurological functions associated with a decrease in the number of dead neurons and the area of brain damage after ICH in mice. Moreover, MK3102 prominently upregulated glucagon-like peptide-1 receptor (GLP-1R) levels after ICH. In addition, the elevation of iron content, lipid peroxidation and FACL4 after ICH; and reduction of GPX4 and AIFM2; were mitigated by MK3102 in vitro and in vivo. The neuroprotective effect of MK3102 may be related to anti-ferroptosis by regulating GLP-1R after ICH injury.


Metabolic defects in splenic B cell compartments from patients with liver cirrhosis.

  • Man Huang‎ et al.
  • Cell death & disease‎
  • 2020‎

Liver cirrhosis is associated with defective vaccine responses and increased infections. Dysregulated B cell compartments in cirrhotic patients have been noticed but not well characterized, especially in the spleen. Here, we comprehensively investigated B cell perturbations from the spleens and peripheral blood of cirrhotic patients. We found that liver cirrhosis significantly depleted both switched and nonswitched splenic memory B cells, which was further confirmed histologically. Bulk RNA-seq revealed significant metabolic defects as the potential mechanism for the impaired splenic B cell functions. Functionally, the splenic memory B cells from cirrhotic patients showed strong metabolic defects and reduced proliferation compared with those from healthy controls. Thus, liver cirrhosis extensively disturbs the splenic and peripheral B cell compartments, which may contribute to defective humoral immunity during liver cirrhosis.


Autophagy, lysosome dysfunction and mTOR inhibition in MNU-induced photoreceptor cell damage.

  • Ying Li‎ et al.
  • Tissue & cell‎
  • 2019‎

Progressive photoreceptor death is the main cause of retinal degeneration diseases. Determining the underlying mechanism of this process is essential for therapy improvement. Autophagy has long been considered to be involved in neuronal degeneration diseases, and the regulation of autophagy is thought to have potential implications for neurodegenerative disease therapies. However, whether autophagy is protective or destructive varies among diseases and is controversial. In the present study, we established an N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell damage model in vitro that faithfully replicated photoreceptor cell death in retinal degeneration diseases. Cell viability was tested by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays. Reactive oxygen species (ROS) levels were assessed through 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence. Autophagy was confirmed by observing autophagosomes using transmission electron microscopy (TEM). A lysosome tracker was used to identify acidic lysosomes in cells. We also measured the expression of some proteins related to autophagy, apoptosis and lysosomal degradation by western blot and immunofluorescence assays. We found that MNU could decrease photoreceptor cell viability in a time- and dose-dependent manner, and this change was accompanied by concomitant increases in ROS and the expression of the apoptosis-inducing protein cleaved caspase-3. Moreover, autophagy was activated by MNU treatment during this process. Inhibition of autophagy with 3-methyladenine accelerated cell damage. Lysosome dysfunction was confirmed by autophagosome enlargement and increased cathepsin expression, which was accompanied by mTOR dephosphorylation. In conclusion, autophagy was activated through inhibition of the PI3K/mTOR pathway in the context of MNU-induced photoreceptor cell death. Prolonged mTOR dephosphorylation and autophagy activation resulted in autophagic vacuole accumulation, as indicated by inefficient degradation in lysosomes, and further led to apoptosis.


IFITM3 promotes glioblastoma stem cell-mediated angiogenesis via regulating JAK/STAT3/bFGF signaling pathway.

  • Zhangsheng Xiong‎ et al.
  • Cell death & disease‎
  • 2024‎

Interferon-induced transmembrane protein 3 (IFITM3) has been previously verified to be an endosomal protein that prevents viral infection. Recent findings suggested IFITM3 as a key factor in tumor invasion and progression. To clarify the role and molecular mechanism of IFITM3 in Glioblastoma multiforme (GBM) progression, we investigated the expression of IFITM3 in glioma datasets culled from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). Primary GBM stem cells (GSCs) were cultured and identified in vitro. Loss-of-function and gain-of-function experiments were established by using shRNAs and lentiviral vectors targeting IFITM3. Co-culture system of GSCs and vascular endothelial cells was constructed in a Transwell chamber. Tube formation and spheroid-based angiogenesis assays were performed to determine the angiogenic capacity of endothelial cells. Results revealed that IFITM3 is elevated in GBM samples and predictive of adverse outcome. Mechanistically, GSCs-derived IFITM3 causes activation of Jak2/STAT3 signaling and leads to robust secretion of bFGF into tumor environment, which eventually results in enhanced angiogenesis. Taken together, these evidence indicated IFITM3 as an essential factor in GBM angiogenesis. Our findings provide a new insight into mechanism by which IFITM3 modulates GBM angiogenesis.


Resolving the graft ischemia-reperfusion injury during liver transplantation at the single cell resolution.

  • Linhe Wang‎ et al.
  • Cell death & disease‎
  • 2021‎

Ischemia-reperfusion injury (IRI) remains the major reason for impaired donor graft function and increased mortality post-liver transplantation. The mechanism of IRI involves multiple pathophysiological processes and numerous types of cells. However, a systematic and comprehensive single-cell transcriptional profile of intrahepatic cells during liver transplantation is still unclear. We performed a single-cell transcriptome analysis of 14,313 cells from liver tissues collected from pre-procurement, at the end of preservation and 2 h post-reperfusion. We made detailed annotations of mononuclear phagocyte, endothelial cell, NK/T, B and plasma cell clusters, and we described the dynamic changes of the transcriptome of these clusters during IRI and the interaction between mononuclear phagocyte clusters and other cell clusters. In addition, we found that TNFAIP3 interacting protein 3 (TNIP3), specifically and highly expressed in Kupffer cell clusters post-reperfusion, may have a protective effect on IRI. In summary, our study provides the first dynamic transcriptome map of intrahepatic cell clusters during liver transplantation at single-cell resolution.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: