Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

COX-2- and endoplasmic reticulum stress-independent induction of ULBP-1 and enhancement of sensitivity to NK cell-mediated cytotoxicity by celecoxib in colon cancer cells.

  • So-Jung Kim‎ et al.
  • Experimental cell research‎
  • 2015‎

In the present study, we investigated whether celecoxib could induce the expression of NKG2D ligands in clonogenic colon cancer cells, and increase their susceptibility to NK cell-mediated cell death. Celecoxib and its non-coxib analog, 2,5-dimethyl celecoxib, induced ULBP-1 and DR5 in both COX-2 negative HCT-15 cells and COX-2 positive HT-29 cells. Celecoxib increased their susceptibility to NK92 cells in both DELFIA assay and soft agar colony forming assay. The inducibility of ULBP-1 and DR5 by celecoxib was not different between CD44- and CD44+ HCT-15 cells, and CD133- and CD133+ HT-29 cells. Celecoxib increased the susceptibility of highly clonogenic CD44+ HCT-15 and CD133+ HT-29 cells to NK92 cells, at least comparable to less clonogenic CD44- HCT-15 and CD133- HT-29 cells, respectively. In addition, celecoxib induced CHOP, and thapsigargin, an inducer of ER (endoplasmic reticulum) stress, induced DR5 but not ULBP1 in HCT-15. Taken together, these findings suggest that celecoxib induces the expression of ULBP-1 as well as DR5 in clonogenic colon cancer cells via COX-2 and ER stress-independent pathways, and increases their susceptibility to NK cells.


Potentiation of TRAIL‑induced cell death by nonsteroidal anti‑inflammatory drug in human hepatocellular carcinoma cells through the ER stress‑dependent autophagy pathway.

  • Su-Hoon Lee‎ et al.
  • Oncology reports‎
  • 2020‎

Hepatocellular carcinoma (HCC) is the most commonly diagnosed primary liver malignancy. The limited success with relapse of the disease in HCC therapy is frequently associated with the acquired resistance to anticancer drugs. To develop a strategy and design for overcoming the resistance of HCC cells to TNF‑related apoptosis inducing ligand (TRAIL)‑induced cell death, we evaluated the efficacy of a non‑steroidal anti‑inflammatory drug (NSAID) in combination with TRAIL against TRAIL‑resistant HCC cells expressing a high level of CD44. We revealed by MTT and western blotting, respectively, that celecoxib (CCB), an NSAID, and 2,5‑dimethyl celecoxib (DMC), a non‑cyclooxygenase (COX)‑2 inhibitor analog of CCB, were able to sensitize TRAIL‑resistant HCC cells to TRAIL, implicating a COX‑independent mechanism. CCB dose‑dependently enhanced LC3‑II and reduced p62 levels through AMPK activation and inhibition of the Akt/mTOR pathway and upregulated expression of ATF4/CHOP, leading to activation of endoplasmic reticulum (ER) stress‑dependent autophagy. The TRAIL sensitization capacity of CCB in TRAIL‑resistant HCC cells was abrogated by an ER stress inhibitor. In addition, we also revealed by flow cytometry and western blotting, respectively, that accelerated downregulation of TRAIL‑mediated c‑FLIP expression, DR5 activation and CD44 degradation/downregulation by NSAID resulted in activation of caspases and poly(ADP‑ribose) polymerase (PARP), leading to the sensitization of TRAIL‑resistant HCC cells to TRAIL and thereby reversal of TRAIL resistance. From these results, we propose that NSAID in combination with TRAIL may improve the antitumor activity of TRAIL in TRAIL‑resistant HCC, and this approach may serve as a novel strategy that maximizes the therapeutic efficacy of TRAIL for clinical application.


Sensitization of multidrug-resistant cancer cells to Hsp90 inhibitors by NSAIDs-induced apoptotic and autophagic cell death.

  • Hyun-Jung Moon‎ et al.
  • Oncotarget‎
  • 2018‎

NSAIDs (non-steroidal anti-inflammatory drugs) have potential use as anticancer agents, either alone or in combination with other cancer therapies. We found that NSAIDs including celecoxib (CCB) and ibuprofen (IBU) significantly potentiated the cytotoxicity of Hsp90 inhibitors in human multidrug-resistant (MDR) cells expressing high levels of mutant p53 (mutp53) protein and P-glycoprotein (P-gp), and reversed Hsp90 inhibitor resistance caused by activation of heat shock factor 1 (HSF1) and by up-regulation of heat shock proteins (Hsps) and P-gp. Inhibition of Akt/mTOR and STAT3 pathways by CCB induced autophagy, which promoted the degradation of mutp53, one of Hsp90 client proteins, and subsequently down-regulated HSF1/Hsps and P-gp. Inhibition of autophagy prevented mutp53 degradation and CCB-induced apoptosis, and inhibition of caspase-3-mediated apoptotic pathway by Z-DEVD-FMK did not completely block CCB-induced cell death in MDR cells, suggesting that autophagic and apoptotic cell death may contribute to CCB-induced cytotoxicity in MDR cells. Furthermore, CCB and IBU suppressed Hsp90 inhibitor-induced HSF1/Hsp70/P-gp activity and mutp53 expression in MDR cells. Our results suggest that NSAIDs can be used as potential Hsp90 inhibitor chemosensitizers and reverse resistance of MDR cells to Hsp90 inhibitors via induction of apoptosis and autophagy. These results might enable the use of lower, less toxic doses of Hsp90 inhibitors and facilitate the design of practically applicable, novel combination therapy for the treatment of MDR cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: