Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 46 papers

Caveolin-3 and Caveolin-1 Interaction Decreases Channel Dysfunction Due to Caveolin-3 Mutations.

  • Patrizia Benzoni‎ et al.
  • International journal of molecular sciences‎
  • 2024‎

Caveolae constitute membrane microdomains where receptors and ion channels functionally interact. Caveolin-3 (cav-3) is the key structural component of muscular caveolae. Mutations in CAV3 lead to caveolinopathies, which result in both muscular dystrophies and cardiac diseases. In cardiomyocytes, cav-1 participates with cav-3 to form caveolae; skeletal myotubes and adult skeletal fibers do not express cav-1. In the heart, the absence of cardiac alterations in the majority of cases may depend on a conserved organization of caveolae thanks to the expression of cav-1. We decided to focus on three specific cav-3 mutations (Δ62-64YTT; T78K and W101C) found in heterozygosis in patients suffering from skeletal muscle disorders. We overexpressed both the WT and mutated cav-3 together with ion channels interacting with and modulated by cav-3. Patch-clamp analysis conducted in caveolin-free cells (MEF-KO), revealed that the T78K mutant is dominant negative, causing its intracellular retention together with cav-3 WT, and inducing a significant reduction in current densities of all three ion channels tested. The other cav-3 mutations did not cause significant alterations. Mathematical modelling of the effects of cav-3 T78K would impair repolarization to levels incompatible with life. For this reason, we decided to compare the effects of this mutation in other cell lines that endogenously express cav-1 (MEF-STO and CHO cells) and to modulate cav-1 expression with an shRNA approach. In these systems, the membrane localization of cav-3 T78K was rescued in the presence of cav-1, and the current densities of hHCN4, hKv1.5 and hKir2.1 were also rescued. These results constitute the first evidence of a compensatory role of cav-1 in the heart, justifying the reduced susceptibility of this organ to caveolinopathies.


Unidirectional Regulation of Vimentin Intermediate Filaments to Caveolin-1.

  • Xuemeng Shi‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Both the mechanosensitive vimentin cytoskeleton and endocytic caveolae contribute to various active processes such as cell migration, morphogenesis, and stress response. However, the crosstalk between these two systems has remained elusive. Here, we find that the subcellular expression between vimentin and caveolin-1 is mutual exclusive, and vimentin filaments physically arrest the cytoplasmic motility of caveolin-1 vesicles. Importantly, vimentin depletion increases the phosphorylation of caveolin-1 on site Tyr14, and restores the compromised cell migration rate and directionality caused by caveolin-1 deprivation. Moreover, upon hypo-osmotic shock, vimentin-knockout recovers the reduced intracellular motility of caveolin-1 vesicles. In contrary, caveolin-1 depletion shows no effect on the expression, phosphorylation (on sites Ser39, Ser56, and Ser83), distribution, solubility, and cellular dynamics of vimentin filaments. Taken together, our data reveals a unidirectional regulation of vimentin to caveolin-1, at least on the cellular level.


Endocytosis of Connexin 36 is Mediated by Interaction with Caveolin-1.

  • Anna Kotova‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The gap junctional protein connexin 36 (Cx36) has been co-purified with the lipid raft protein caveolin-1 (Cav-1). The relevance of an interaction between the two proteins is unknown. In this study, we explored the significance of Cav-1 interaction in the context of intracellular and membrane transport of Cx36. Coimmunoprecipitation assays and Förster resonance energy transfer analysis (FRET) were used to confirm the interaction between the two proteins in the Neuro 2a cell line. We found that the Cx36 and Cav-1 interaction was dependent on the intracellular calcium levels. By employing different microscopy techniques, we demonstrated that Cav-1 enhances the vesicular transport of Cx36. Pharmacological interventions coupled with cell surface biotinylation assays and FRET analysis revealed that Cav-1 regulates membrane localization of Cx36. Our data indicate that the interaction between Cx36 and Cav-1 plays a role in the internalization of Cx36 by a caveolin-dependent pathway.


Caveolin-1 Expression in the Dorsal Striatum Drives Methamphetamine Addiction-Like Behavior.

  • Yosef Avchalumov‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Dopamine D1 receptor (D1R) function is regulated by membrane/lipid raft-resident protein caveolin-1 (Cav1). We examined whether altered expression of Cav1 in the dorsal striatum would affect self-administration of methamphetamine, an indirect agonist at the D1Rs. A lentiviral construct expressing Cav1 (LV-Cav1) or containing a short hairpin RNA against Cav1 (LV-shCav1) was used to overexpress or knock down Cav1 expression respectively, in the dorsal striatum. Under a fixed-ratio schedule, LV-Cav1 enhanced and LV-shCav1 reduced responding for methamphetamine in an extended access paradigm compared to LV-GFP controls. LV-Cav1 and LV-shCav1 also produced an upward and downward shift in a dose-response paradigm, generating a drug vulnerable/resistant phenotype. LV-Cav1 and LV-shCav1 did not alter responding for sucrose. Under a progressive-ratio schedule, LV-shCav1 generally reduced positive-reinforcing effects of methamphetamine and sucrose as seen by reduced breakpoints. Western blotting confirmed enhanced Cav1 expression in LV-Cav1 rats and reduced Cav1 expression in LV-shCav1 rats. Electrophysiological findings in LV-GFP rats demonstrated an absence of high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in the dorsal striatum after extended access methamphetamine self-administration, indicating methamphetamine-induced occlusion of plasticity. LV-Cav1 prevented methamphetamine-induced plasticity via increasing phosphorylation of calcium calmodulin kinase II, suggesting a mechanism for addiction vulnerability. LV-shCav1 produced a marked deficit in the ability of HFS to produce LTP and, therefore, extended access methamphetamine was unable to alter striatal plasticity, indicating a mechanism for resistance to addiction-like behavior. Our results demonstrate that Cav1 expression and knockdown driven striatal plasticity assist with modulating addiction to drug and nondrug rewards, and inspire new strategies to reduce psychostimulant addiction.


Caveolin-1 Regulation and Function in Mouse Uterus during Early Pregnancy and under Human In Vitro Decidualization.

  • Zhuo Song‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Decidualization is essential to rodent and primate pregnancy. Senescence is increased during decidualization. Failure of senescence clearance during decidualization will cause pregnancy abnormality. Caveolin-1 is located in plasmalemmal caveolae and involved in senescence. However, whether caveolin-1 is involved in decidualization remains undefined. In this study, we examined the expression, regulation and function of Caveolin-1 during mouse early pregnancy and under mouse and human in vitro decidualization. From days 1 to 8 of pregnancy, Caveolin-1 signals are mainly located in endothelium and myometrium. Estrogen stimulates Caveolin-1 expression in endothelium. Deficiency of estrogen receptor α significantly promotes Caveolin-1 level in uterine stromal cells. Progesterone upregulates Caveolin-1 expression in luminal epithelium. During mouse in vitro decidualization, Caveolin-1 is significantly increased. However, Caveolin-1 is obviously decreased during human in vitro decidualization. Caveolin-1 overexpression and siRNA suppress and upregulate IGFBP1 expression under in vitro decidualization, respectively. Blastocysts-derived tumor necrosis factor α (TNFα) and human Chorionic Gonadotropin (hCG) regulate Caveolin-1 in mouse and human decidual cells, respectively. Caveolin-1 levels are also regulated by high glucose and insulin. In conclusion, a low level of Caveolin-1 should be beneficial for human decidualization.


Caveolin-1 limits the contribution of BKCa channel to MCF-7 breast cancer cell proliferation and invasion.

  • Cheng Du‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Increasing evidence suggests that caveolin-1 and large conductance Ca²⁺-activated potassium (BKCa) channels are implicated in the carcinogenesis processes, including cell proliferation and invasion. These two proteins have been proven to interact with each other in vascular endothelial and smooth muscle cells and modulate vascular contractility. In this study, we investigated the probable interaction between caveolin-1 and BKCa in MCF-7 breast cancer cells. We identified that caveolin-1 and BKCa were co-localized and could be reciprocally co-immunoprecipitated in human breast cancer MCF-7 cells. siRNA mediated caveolin-1 knockdown resulted in activation and increased surface expression of BKCa channel, and subsequently promoted the proliferation and invasiveness of breast cancer cells. These effects were attenuated in the presence of BKCa-siRNA. Conversely, up-regulated caveolin-1 suppressed function and surface expression of BKCa channel and exerted negative effects on breast cancer cell proliferation and invasion. Similarly, these opposing effects were abrogated by BKCa up-regulation. Collectively, our findings suggest that BKCa is a critical target for suppression by caveolin-1 in suppressing proliferation and invasion of breast cancer cells. The functional complex of caveolin-1 and BKCa in the membrane microdomain may be served as a potential therapeutic target in breast cancer.


Caveolin-1 Scaffolding Domain Peptides Alleviate Liver Fibrosis by Inhibiting TGF-β1/Smad Signaling in Mice.

  • Jing Lu‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Liver fibrosis is the common pathological process characterized by activation of hepatic stellate cells (HSCs) and overproduction of extracellular matrix (ECM). Caveolin-1 (Cav1), the principal component of caveolae, is regarded as an important inhibitor of multiple signaling molecules including transforming growth factor β1(TGF-β1) signaling. To evaluate the role of Cav1 in liver fibrosis, Cav1 deficient (Cav1−/−) and wild type (WT) mice were subjected to liver fibrosis induced by carbon tetrachloride (CCl₄). Results indicated no significant difference between Cav1−/− and WT mice in inflammation or collagen content before CCl₄ treatment. After CCl₄ administration, Cav1−/− mice showed enhanced TGF-β1 signaling, as reflected by a significantly greater amount of phosphorylation of Smad2 and collagen deposition in livers over WT animals. Qualitative and quantitative analysis indicated that inflammatory injury to the liver was markedly aggravated, accompanied by increased degeneration and necrosis of hepatocytes, higher alanine aminotransferase (ALT)/aspartate aminotransferase (AST), TGF-α and IL-1β levels in Cav1−/− animals. The mRNA and protein levels of α-smooth muscle actin (α-SMA), Collagen α1(I), and Collagen α1(III) were further enhanced in Cav1−/− animals. We also observed a significant decrease in collagen content in Cav1−/− and WT animals administrated with Cav1 scaffolding domain peptides (CSD). In vitro study indicated that phosphorylation of Smad2 was inhibited after CSD treatment, accompanied by decreased protein levels of α-SMA, Collagen α1(I), and Collagen α1(III) in HSCs. We conclude that Cav1 is an important inhibitor of TGF-β1/Smad signaling in HSCs activation and collagen production, which might make it a promising target for therapy of liver fibrosis.


Caveolin-1 Alleviates Acetaminophen-Induced Hepatotoxicity in Alcoholic Fatty Liver Disease by Regulating the Ang II/EGFR/ERK Axis.

  • Jiao Xin‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Acetaminophen (APAP) is a widely used antipyretic analgesic which can lead to acute liver failure after overdoses. Chronic alcoholic fatty liver disease (AFLD) appears to enhance the risk and severity of APAP-induced liver injury, and the level of angiotensin II (Ang II) increased sharply at the same time. However, the underlying mechanisms remain unclear. Caveolin-1 (CAV1) has been proven to have a protective effect on AFLD. This study aimed to examine whether CAV1 can protect the APAP-induced hepatotoxicity of AFLD by affecting Ang II or its related targets. In vivo, the AFLD model was established according to the chronic-plus-binge ethanol model. Liver injury and hepatic lipid accumulation level were determined. The levels of Angiotensin converting enzyme 2 (ACE2), Ang II, CAV1, and other relevant proteins were evaluated by western blotting. In vitro, L02 cells were treated with alcohol and oleic acid mixture and APAP. CAV1 and ACE2 expression was downregulated in APAP-treated AFLD mice compared to APAP-treated mice. The overexpression of CAV1 in mice and L02 cells alleviated APAP-induced hepatotoxicity in AFLD and downregulated Ang II, p-EGFR/EGFR and P-ERK/ERK expression. Immunofluorescence experiments revealed interactions between CAV1, Ang II, and EGFR. The application of losartan (an Ang II receptor antagonist) and PD98059 (an ERK1/2 inhibitor) alleviated APAP-induced hepatotoxicity in AFLD. In conclusion, our findings verified that CAV1 alleviates APAP-aggravated hepatotoxicity in AFLD by downregulating the Ang II /EGFR/ERK axis, which could be a novel therapeutic target for its prevention or treatment.


Age-Related Modulations of AQP4 and Caveolin-1 in the Hippocampus Predispose the Toxic Effect of Phoneutria nigriventer Spider Venom.

  • Edilene S Soares‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

We have previously demonstrated that Phoneutria nigriventer venom (PNV) causes blood-brain barrier (BBB) breakdown, swelling of astrocytes end-feet and fluid permeation into brain interstitium in rats. Caveolae and water channels respond to BBB alterations by co-participation in shear stress response and edema formation/resolution. Herein, we showed post-natal developmental-related changes of two BBB-associated transporter proteins: the endothelial caveolin-1 (Cav-1), the major scaffolding protein from caveolae frame, and the astroglial aquaporin-4 (AQP4), the main water channel protein expressed in astrocytic peri-vascular end-feet processes, in the hippocampus of rats intraperitoneally-administered PNV. Western blotting protein levels; immunohistochemistry (IHC) protein distribution in CA1, CA2, and CA3 subfields; and gene expression by Real Time-Polymerase Chain Reaction (qPCR) were assessed in post-natal Day 14 (P14) and 8-10-week-old rats over critical periods of envenomation. The intensity and duration of the toxic manifestations indicate P14 neonate rats more vulnerable to PNV than adults. Histologically, the capillaries of P14 and 8-10-week-old rats treated with PNV showed perivascular edema, while controls did not. The intensity of the toxic manifestations in P14 decreases temporally (2 > 5 > 24 h), while inversely the expression of AQP4 and Cav-1 peaked at 24 h when clinically PNV-treated animals do not differ from saline controls. IHC of AQP4 revealed that hippocampal CA1 showed the least expression at 2 h when toxic manifestation was maximal. Subfield IHC quantification revealed that in P14 rats Cav-1 peaked at 24 h when toxic manifestations were absent, whereas in 8-10-week-old rats Cav-1 peaked at 2 h when toxic signs were highest, and progressively attenuated such increases until 24 h, remaining though significantly above baseline. Considering astrocyte-endothelial physical and functional interactions, we hypothesize that age-related modulations of AQP4 and Cav-1 might be linked both to changes in functional properties of astrocytes during post-natal development and in the BBB breakdown induced by the venom of P. nigriventer.


Loss of Caveolin-1 Is Associated with a Decrease in Beta Cell Death in Mice on a High Fat Diet.

  • Paloma Lillo Urzúa‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Elevated free fatty acids (FFAs) impair beta cell function and reduce beta cell mass as a consequence of the lipotoxicity that occurs in type 2 diabetes (T2D). We previously reported that the membrane protein caveolin-1 (CAV1) sensitizes to palmitate-induced apoptosis in the beta pancreatic cell line MIN6. Thus, our hypothesis was that CAV1 knock-out (CAV1 KO) mice subjected to a high fat diet (HFD) should suffer less damage to beta cells than wild type (WT) mice. Here, we evaluated the in vivo response of beta cells in the pancreatic islets of 8-week-old C57Bl/6J CAV1 KO mice subjected to a control diet (CD, 14% kcal fat) or a HFD (60% kcal fat) for 12 weeks. We observed that CAV1 KO mice were resistant to weight gain when on HFD, although they had high serum cholesterol and FFA levels, impaired glucose tolerance and were insulin resistant. Some of these alterations were also observed in mice on CD. Interestingly, KO mice fed with HFD showed an adaptive response of the pancreatic beta cells and exhibited a significant decrease in beta cell apoptosis in their islets compared to WT mice. These in vivo results suggest that although the CAV1 KO mice are metabolically unhealthy, they adapt better to a HFD than WT mice. To shed light on the possible signaling pathway(s) involved, MIN6 murine beta cells expressing (MIN6 CAV) or not expressing (MIN6 Mock) CAV1 were incubated with the saturated fatty acid palmitate in the presence of mitogen-activated protein kinase inhibitors. Western blot analysis revealed that CAV1 enhanced palmitate-induced JNK, p38 and ERK phosphorylation in MIN6 CAV1 cells. Moreover, all the MAPK inhibitors partially restored MIN6 viability, but the effect was most notable with the ERK inhibitor. In conclusion, our results suggest that CAV1 KO mice adapted better to a HFD despite their altered metabolic state and that this may at least in part be due to reduced beta cell damage. Moreover, they indicate that the ability of CAV1 to increase sensitivity to FFAs may be mediated by MAPK and particularly ERK activation.


Glutamine Uptake via SNAT6 and Caveolin Regulates Glutamine-Glutamate Cycle.

  • Nikhil R Gandasi‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

SLC38A6 (SNAT6) is the only known member of the SLC38 family that is expressed exclusively in the excitatory neurons of the brain. It has been described as an orphan transporter with an unknown substrate profile, therefore very little is known about SNAT6. In this study, we addressed the substrate specificity, mechanisms for internalization of SNAT6, and the regulatory role of SNAT6 with specific insights into the glutamate-glutamine cycle. We used tritium-labeled amino acids in order to demonstrate that SNAT6 is functioning as a glutamine and glutamate transporter. SNAT6 revealed seven predicted transmembrane segments in a homology model and was localized to caveolin rich sites at the plasma membrane. SNAT6 has high degree of specificity for glutamine and glutamate. Presence of these substrates enables formation of SNAT6-caveolin complexes that aids in sodium dependent trafficking of SNAT6 off the plasma membrane. To further understand its mode of action, several potential interacting partners of SNAT6 were identified using bioinformatics. Among them where CTP synthase 2 (CTPs2), phosphate activated glutaminase (Pag), and glutamate metabotropic receptor 2 (Grm2). Co-expression analysis, immunolabeling with co-localization analysis and proximity ligation assays of these three proteins with SNAT6 were performed to investigate possible interactions. SNAT6 can cycle between cytoplasm and plasma membrane depending on availability of substrates and interact with Pag, synaptophysin, CTPs2, and Grm2. Our data suggest a potential role of SNAT6 in glutamine uptake at the pre-synaptic terminal of excitatory neurons. We propose here a mechanistic model of SNAT6 trafficking that once internalized influences the glutamate-glutamine cycle in presence of its potential interacting partners.


AP2M1 Supports TGF-β Signals to Promote Collagen Expression by Inhibiting Caveolin Expression.

  • Saerom Lee‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The extracellular matrix (ECM) is important for normal development and disease states, including inflammation and fibrosis. To understand the complex regulation of ECM, we performed a suppressor screening using Caenorhabditis elegans expressing the mutant ROL-6 collagen protein. One cuticle mutant has a mutation in dpy-23 that encodes the μ2 adaptin (AP2M1) of clathrin-associated protein complex II (AP-2). The subsequent suppressor screening for dpy-23 revealed the lon-2 mutation. LON-2 functions to regulate body size through negative regulation of the tumor growth factor-beta (TGF-β) signaling pathway responsible for ECM production. RNA-seq analysis showed a dominant change in the expression of collagen genes and cuticle components. We noted an increase in the cav-1 gene encoding caveolin-1, which functions in clathrin-independent endocytosis. By knockdown of cav-1, the reduced TGF-β signal was significantly restored in the dpy-23 mutant. In conclusion, the dpy-23 mutation upregulated cav-1 expression in the hypodermis, and increased CAV-1 resulted in a decrease of TβRI. Finally, the reduction of collagen expression including rol-6 by the reduced TGF-β signal influenced the cuticle formation of the dpy-23 mutant. These findings could help us to understand the complex process of ECM regulation in organism development and disease conditions.


VEGF-R2/Caveolin-1 Pathway of Undifferentiated ARPE-19 Retina Cells: A Potential Target as Anti-VEGF-A Therapy in Wet AMD by Resvega, an Omega-3/Polyphenol Combination.

  • Flavie Courtaut‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Age-related macular degeneration (AMD) is one of the main causes of deterioration in vision in adults aged 55 and older. In spite of therapies, the progression of the disease is often observed without reverse vision quality. In the present study, we explored whether, in undifferentiated ARPE-19 retinal cells, a disruption of the VEGF receptors (VEGF-R)/caveolin-1 (Cav-1)/protein kinases pathway could be a target for counteracting VEGF secretion. We highlight that Resvega®, a combination of omega-3 fatty acids with an antioxidant, resveratrol, inhibits VEGF-A secretion in vitro by disrupting the dissociation of the VEGF-R2/Cav-1 complex into rafts and subsequently preventing MAPK activation. Moreover, DNA ChIP analysis reveals that this combination prevents the interaction between AP-1 and vegf-a and vegf-r2 gene promoters. By these pathways, Resvega could present a potential interest as nutritional complementation against AMD.


Helium-Induced Changes in Circulating Caveolin in Mice Suggest a Novel Mechanism of Cardiac Protection.

  • Nina C Weber‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The noble gas helium (He) induces cardioprotection in vivo through unknown molecular mechanisms. He can interact with and modify cellular membranes. Caveolae are cholesterol and sphingolipid-enriched invaginations of the plasma-membrane-containing caveolin (Cav) proteins that are critical in protection of the heart. Mice (C57BL/6J) inhaled either He gas or adjusted room air. Functional measurements were performed in the isolated Langendorff perfused heart at 24 h post He inhalation. Electron paramagnetic resonance spectrometry (EPR) of samples was carried out at 24 h post He inhalation. Immunoblotting was used to detect Cav-1/3 expression in whole-heart tissue, exosomes isolated from platelet free plasma (PFP) and membrane fractions. Additionally, transmission electron microscopy analysis of cardiac tissue and serum function and metabolomic analysis were performed. In contrast to cardioprotection observed in in vivo models, the isolated Langendorff perfused heart revealed no protection after He inhalation. However, levels of Cav-1/3 were reduced 24 h after He inhalation in whole-heart tissue, and Cav-3 was increased in exosomes from PFP. Addition of serum to muscle cells in culture or naïve ventricular tissue increased mitochondrial metabolism without increasing reactive oxygen species generation. Primary and lipid metabolites determined potential changes in ceramide by He exposure. In addition to direct effects on myocardium, He likely induces the release of secreted membrane factors enriched in caveolae. Our results suggest a critical role for such circulating factors in He-induced organ protection.


Kinase Suppressor of RAS 1 (KSR1) Maintains the Transformed Phenotype of BRAFV600E Mutant Human Melanoma Cells.

  • Zhi Liu‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Kinase Suppressor of RAS 1 (KSR1) is a scaffolding protein for the RAS-RAF-MEK-ERK pathway, which is one of the most frequently altered pathways in human cancers. Previous results have shown that KSR1 has a critical role in mutant RAS-mediated transformation. Here, we examined the role of KSR1 in mutant BRAF transformation. We used CRISPR/Cas9 to knock out KSR1 in a BRAFV600E-transformed melanoma cell line. KSR1 loss produced a complex phenotype characterised by impaired proliferation, cell cycle defects, decreased transformation, decreased invasive migration, increased cellular senescence, and increased apoptosis. To decipher this phenotype, we used a combination of proteomic ERK substrate profiling, global protein expression profiling, and biochemical validation assays. The results suggest that KSR1 directs ERK to phosphorylate substrates that have a critical role in ensuring cell survival. The results further indicate that KSR1 loss induces the activation of p38 Mitogen-Activated Protein Kinase (MAPK) and subsequent cell cycle aberrations and senescence. In summary, KSR1 function plays a key role in oncogenic BRAF transformation.


Nerve Growth Factor Signaling from Membrane Microdomains to the Nucleus: Differential Regulation by Caveolins.

  • Ambre Spencer‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Membrane microdomains or "lipid rafts" have emerged as essential functional modules of the cell, critical for the regulation of growth factor receptor-mediated responses. Herein we describe the dichotomy between caveolin-1 and caveolin-2, structural and regulatory components of microdomains, in modulating proliferation and differentiation. Caveolin-2 potentiates while caveolin-1 inhibits nerve growth factor (NGF) signaling and subsequent cell differentiation. Caveolin-2 does not appear to impair NGF receptor trafficking but elicits prolonged and stronger activation of MAPK (mitogen-activated protein kinase), Rsk2 (ribosomal protein S6 kinase 2), and CREB (cAMP response element binding protein). In contrast, caveolin-1 does not alter initiation of the NGF signaling pathway activation; rather, it acts, at least in part, by sequestering the cognate receptors, TrkA and p75NTR, at the plasma membrane, together with the phosphorylated form of the downstream effector Rsk2, which ultimately prevents CREB phosphorylation. The non-phosphorylatable caveolin-1 serine 80 mutant (S80V), no longer inhibits TrkA trafficking or subsequent CREB phosphorylation. MC192, a monoclonal antibody towards p75NTR that does not block NGF binding, prevents exit of both NGF receptors (TrkA and p75NTR) from lipid rafts. The results presented herein underline the role of caveolin and receptor signaling complex interplay in the context of neuronal development and tumorigenesis.


Ceramide-Enriched Membrane Domains Contribute to Targeted and Nontargeted Effects of Radiation through Modulation of PI3K/AKT Signaling in HNSCC Cells.

  • Riad Ladjohounlou‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

We investigated the potential involvement of ceramide-enriched membrane domains in radiation-induced targeted and nontargeted effects using head and neck squamous cell carcinoma with opposite radiosensitivities. In radiosensitive SCC61 cells, the proportion of targeted effects was 34% and nontargeted effects killed 32% of cells. In contrast, only targeted effects (30%) are involved in the overall death of radioresistant SQ20B cells. We then demonstrated in SCC61 cells that nontargeted cell response was driven by the formation of the radiation-induced ceramide-enriched domain. By contrast, the existence of these platforms in SQ20B cells confers a permissive region for phosphatidylinositol-3-kinase (PI3K)/AKT activation. The disruption of lipid raft results in strong inhibition of PI3K/AKT signaling, leading to radiosensitization and apparition of nontargeted effects. These results suggest that ceramide-enriched platforms play a significant role in targeted and nontargeted effects during radiotherapy and that drugs modulating cholesterol levels may be a good alternative for improving radiotherapy effectiveness.


Hypoxia Activates Src and Promotes Endocytosis Which Decreases MMP-2 Activity and Aggravates Renal Interstitial Fibrosis.

  • Zhengyuan Cheng‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

The aggravation of renal interstitial fibrosis in the advanced-stage of chronic kidney disease is related to decreased matrix metalloproteinase-2 (MMP-2) activity, which is induced by hypoxia in the kidney; however, the specific mechanism remains unclear. We previously demonstrated that inhibition of Caveolin-1, a key gene involved in endocytosis, increased MMP-2 activity in hypoxic HK-2 cells. It has been reported that activated Src (phospho-Src Tyr416) is a key molecule in multiple fibrotic pathways. However, whether Src functions on the regulation of Caveolin-1 and MMP-2 activity in hypoxic HK-2 cells remains poorly understood. To explore the underlying mechanism, a rat model of renal interstitial fibrosis was established, then we observed obvious hypoxia in fibrotic kidney tissue and the protein levels of phospho-Src and Caveolin-1 increased, while MMP-2 activity decreased. Next, we treated HK-2 cells with the phospho-Src inhibitor PP1. Compared with normal cells grown in hypoxia, in cells treated with PP1, the protein levels of phospho-Src and Caveolin-1 decreased, as did the protein levels of the MMP-2-activity-regulated molecules RECK (reversion-inducing-cysteine-rich protein with kazal motifs) and TIMP-2 (tissue inhibitor of metalloproteinase-2), while the protein level of MT1-MMP (membrane type 1-matrix metalloproteinase) increased and MMP-2 activity was enhanced. Therefore, hypoxia promotes the phosphorylation of Src and phospho-Src can enhance the endocytosis of HK-2 cells, which leads to decreased MMP-2 activity and aggravates renal interstitial fibrosis.


Lipid Emulsion Enhances Vasoconstriction Induced by Dexmedetomidine in the Isolated Endothelium-Intact Aorta.

  • Soo Hee Lee‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

This study aimed to examine the effect of lipid emulsion (LE) on the vasoconstriction induced by dexmedetomidine (DMT) in the isolated rat aorta and elucidate the associated cellular mechanism. The effect of LE, NW-nitro-L-arginine methyl ester (L-NAME), and methyl-β-cyclodextrin (MβCD) on the DMT-induced contraction was examined. We investigated the effect of LE on the DMT-induced cyclic guanosine monophosphate (cGMP) formation and DMT concentration. The effect of DMT, LE, 4-Amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine,4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), and rauwolscine on the phosphorylation of endothelial nitric oxide synthase (eNOS), caveolin-1, and Src kinase was examined in the human umbilical vein endothelial cells. L-NAME, MβCD, and LE (1%, standardized mean difference (SMD): 2.517) increased the DMT-induced contraction in the endothelium-intact rat aorta. LE (1%) decreased the DMT (10-6 M) concentration (SMD: -6.795) and DMT-induced cGMP formation (SMD: -2.132). LE (1%) reversed the DMT-induced eNOS (Ser1177 and Thr496) phosphorylation. PP2 inhibited caveolin-1 and eNOS phosphorylation induced by DMT. DMT increased the Src kinase phosphorylation. Thus, LE (1%) enhanced the DMT-induced contraction by inhibition of NO synthesis, which may be caused by the decreased DMT concentration. DMT-induced NO synthesis may be caused by the increased eNOS (Ser1177) phosphorylation and decreased eNOS (Thr495) phosphorylation potentially mediated by Src kinase-induced caveolin-1 phosphorylation.


Cyclodextrin-Based Nanostructure Efficiently Delivers siRNA to Glioblastoma Cells Preferentially via Macropinocytosis.

  • Darío Manzanares‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Small interfering ribonucleic acid (siRNA) has the potential to revolutionize therapeutics since it can knockdown very efficiently the target protein. It is starting to be widely used to interfere with cell infection by HIV. However, naked siRNAs are unable to get into the cell, requiring the use of carriers to protect them from degradation and transporting them across the cell membrane. There is no information about which is the most efficient endocytosis route for high siRNA transfection efficiency. One of the most promising carriers to efficiently deliver siRNA are cyclodextrin derivatives. We have used nanocomplexes composed of siRNA and a β-cyclodextrin derivative, AMC6, with a very high transfection efficiency to selectively knockdown clathrin heavy chain, caveolin 1, and p21 Activated Kinase 1 to specifically block clathrin-mediated, caveolin-mediated and macropinocytosis endocytic pathways. The main objective was to identify whether there is a preferential endocytic pathway associated with high siRNA transfection efficiency. We have found that macropinocytosis is the preferential entry pathway for the nanoparticle and its associated siRNA cargo. However, blockade of macropinocytosis does not affect AMC6-mediated transfection efficiency, suggesting that macropinocytosis blockade can be functionally compensated by an increase in clathrin- and caveolin-mediated endocytosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: