Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 47 papers

Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells.

  • Feiyan Liu‎ et al.
  • Oncotarget‎
  • 2016‎

Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that are hallmarks of human cancer. MDSCs inhibit cytotoxic T lymphocytes (CTLs) and NK cell functions to promote tumor immune escape and progression, and therefore are considered key targets in cancer immunotherapy. Recent studies determined a key role of the apoptosis pathways in tumor-induced MDSC homeostasis and it is known that ceramide plays a key role in regulation of mammalian cell apoptosis. In this study, we aimed to determine the efficacy and underlying molecular mechanism of ceramide in suppression of MDSCs. Treatment of tumor-bearing mice with LCL521, a lysosomotropic inhibitor of acid ceramidase, significantly decreased MDSC accumulation in vivo. Using a MDSC-like myeloid cell model, we determined that LCL521 targets lysosomes and increases total cellular C16 ceramide level. Although MDSC-like cells have functional apoptosis pathways, LCL521-induced MDSC death occurs in an apoptosis- and necroptosis-independent mechanism. LCL521 treatment resulted in an increase in the number of autophagic vesicles, heterolysosomes and swollen ERs. Finally, concomitant inhibition of cathepsin B and cathepsin D was required to significantly decrease LCL521-induced cell death. Our observations indicate that LCL521 targets lysosomes to activate cathepsin B and cathepsin D, resulting in interrupted autophagy and ER stress that culminates in MDSC death. Therefore, a ceramidase inhibitor is potentially an effective adjunct therapeutic agent for suppression of MDSCs to enhance the efficacy of CTL-based cancer immunotherapy.


Cathepsin L secretion by host and neoplastic cells potentiates invasion.

  • Samantha S Dykes‎ et al.
  • Oncotarget‎
  • 2019‎

The presence of macrophages within breast tumors correlates with metastatic potential. These tumor-associated macrophages often take on a pro-tumorigenic (M2-like) phenotype resulting in the secretion of growth factors and proteases, including the lysosomal protease cathepsin L. Since cathepsin L also is frequently secreted by breast cancer cells and contributes to tumor invasion, metastasis, and angiogenesis, we hypothesized that secretion of cathepsin L by both tumor-associated macrophages and neoplastic cells would facilitate the metastatic phenotype. Our results showed that the novel cathepsin L/K inhibitors KGP94 and KGP207 could inhibit in vitro M2 macrophage invasion and reduce the macrophage-stimulated invasion of 4T1 murine breast cancer cells. KGP94 and KGP207 treatment also reduced the expression of several M2-associated markers, suggesting that cathepsin L activity may be important for IL-4-driven M0 to M2 differentiation. In addition, cathepsin L shRNA knockdown studies revealed that cathepsin L from both the tumor cell and the macrophage population is important for tumor cell invasion. Thus our data suggest that tumor cells and macrophages may both contribute to the cathepsin L-driven metastatic phenotype of breast cancer. Taken together, these studies highlight the importance of cathepsin L in macrophage functions and suggest that cathepsin inhibition strategies may be therapeutically beneficial by impairing the progression of tumors with high infiltration of M2 macrophages.


YM155 sensitizes TRAIL-induced apoptosis through cathepsin S-dependent down-regulation of Mcl-1 and NF-κB-mediated down-regulation of c-FLIP expression in human renal carcinoma Caki cells.

  • Seon Min Woo‎ et al.
  • Oncotarget‎
  • 2016‎

YM155, a small-molecule survivin inhibitor, has been reported for its anti-cancer activity in various cancer cells. In this study, we investigated the effect of YM155 to enhance TRAIL-mediated apoptosis in human renal carcinoma cells. We found that YM155 alone had no effect on apoptosis, however, combined treatment with YM155 and TRAIL markedly induced apoptosis in human renal carcinoma cells (Caki, ACHN, and A498), breast cancer cells (MDA-MB231), and glioma cells (U251MG), but not normal cells [mesangial cell (MC) and human skin fibroblast (HSF)]. YM155 induced down-regulation of Mcl-1 expression at the post-translational levels, and the overexpression of Mcl-1 markedly inhibited YM155 plus TRAIL-induced apoptosis. Furthermore, YM155 induced down-regulation of c-FLIP mRNA expression through inhibition of NF-κB transcriptional activity. Ectopic expression of c-FLIP markedly blocked YM155-induced TRAIL sensitization. Taken together, our results suggested that YM155 sensitizes TRAIL-mediated apoptosis via down-regulation of Mcl-1 and c-FLIP expression in renal carcinoma Caki cells.


Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer.

  • Laura E Edgington-Mitchell‎ et al.
  • Oncotarget‎
  • 2015‎

Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvironment that function to promote tumor growth and invasion, such that they may be valid targets for anti-metastatic therapeutic approaches. Using activity-based probes, we have examined the activity and expression of cysteine cathepsins in a mouse model of breast cancer metastasis to bone. In mice bearing highly metastatic tumors, we detected abundant cysteine cathepsin expression and activity in myeloid-derived suppressor cells (MDSCs). These immature immune cells have known metastasis-promoting roles, including immunosuppression and osteoclastogenesis, and we assessed the contribution of cysteine cathepsins to these functions. Blocking cysteine cathepsin activity with multiple small-molecule inhibitors resulted in enhanced differentiation of multinucleated osteoclasts. This highlights a potential role for cysteine cathepsin activity in suppressing the fusion of osteoclast precursor cells. In support of this hypothesis, we found that expression and activity of key cysteine cathepsins were downregulated during MDSC-osteoclast differentiation. Another cysteine protease, legumain, also inhibits osteoclastogenesis, in part through modulation of cathepsin L activity. Together, these data suggest that cysteine protease inhibition is associated with enhanced osteoclastogenesis, a process that has been implicated in bone metastasis.


Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity.

  • Bojana Mirković‎ et al.
  • Oncotarget‎
  • 2015‎

Cathepsin B is a ubiquitously expressed lysosomal cysteine protease that participates in protein turnover within lysosomes. However, its protein and activity levels have been shown to be increased in cancer. Cathepsin B endopeptidase activity is involved in the degradation of extracellular matrix, a process that promotes tumor invasion, metastasis and angiogenesis. Previously, we reported an established antibiotic nitroxoline as a potent and selective inhibitor of cathepsin B. In the present study, we elucidated its anti-tumor properties in in vitro and in vivo tumor models. Tumor and endothelial cell lines with high levels of active cathepsin B were selected for functional analysis of nitroxoline in vitro. Nitroxoline significantly reduced extracellular DQ-collagen IV degradation by all evaluated cancer cell lines using spectrofluorimetry. Nitroxoline also markedly decreased tumor cell invasion monitored in real time and reduced the invasive growth of multicellular tumor spheroids, used as a 3D in vitro model of tumor invasion. Additionally, endothelial tube formation was significantly reduced by nitroxoline in an in vitro angiogenesis assay. Finally, nitroxoline significantly abrogated tumor growth, angiogenesis and metastasis in vivo in LPB fibrosarcoma and MMTV-PyMT breast cancer mouse models. Overall, our results designate nitroxoline as a promising drug candidate for anti-cancer treatment.


Overexpression of Cathepsin L is associated with chemoresistance and invasion of epithelial ovarian cancer.

  • Hongying Sui‎ et al.
  • Oncotarget‎
  • 2016‎

Paclitaxel is recommended as a first-line chemotherapeutic agent against, ovarian cancer, however, the development of chemoresistance is a major obstacle in patients with aggressive ovarian cancer and results in recurrence after conventional therapy. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Cathepsin L (CTSL) is overexpressed in various cancers, however, the association between CTSL expression and paclitaxel resistance remains unclear. In the present study, we investigated the role of CTSL in paclitaxel-resistant SKOV3/TAX cells by CTSL silencing. Expression of CTSL was examined by immunohistochemistry and qRT-PCR in 58 clinical samples, and in SKOV3 cells and SKOV3/TAX cells. Effects of CTSL knockdown on ovarian cancer cell proliferation, apoptosis, migration, and invasion were also studied. The IHC and real-time PCR results showed that the difference of CTSL expression between ovarian cancer and the adjacent non-tumourous ovarian tissues was statistically significant. Western blot analysis showed that the CTSL was overexpressed in SKOV3/TAX cells and weakly detectable in paclitaxel-sensitive SKOV3 cells. Knocking-down of CTSL in ovarian cancer cells could decrease cell proliferation, migration, and invasion, and potentiate apoptosis induced by paclitaxel, suggesting CTSL may contribute to Paclitaxel resistance in ovarian cancer.


Exogenous cathepsin G upregulates cell surface MHC class I molecules on immune and glioblastoma cells.

  • Madleen Giese‎ et al.
  • Oncotarget‎
  • 2016‎

Major histocompatibility complex (MHC) class I molecules present antigenic peptides to cytotoxic T cells. During an adaptive immune response, MHC molecules are regulated by several mechanisms including lipopolysaccharide (LPS) and interferon gamma (IFN-g). However, it is unclear whether the serine protease cathepsin G (CatG), which is generally secreted by neutrophils at the site of inflammation, might regulate MHC I molecules. We identified CatG, and to a higher extend CatG and lactoferrin (LF), as an exogenous regulator of cell surface MHC I expression of immune cells and glioblastoma stem cells. In addition, levels of MHC I molecules are reduced on dendritic cells from CatG deficient mice compared to their wild type counterparts. Furthermore, cell surface CatG on immune cells, including T cells, B cells, and NK cells triggers MHC I on THP-1 monocytes suggesting a novel mechanism for CatG to facilitate intercellular communication between infiltrating cells and the respective target cell. Subsequently, our findings highlight the pivotal role of CatG as a checkpoint protease which might force target cells to display their intracellular MHC I:antigen repertoire.


Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies.

  • Timo Gemoll‎ et al.
  • Oncotarget‎
  • 2015‎

Cancer proteomics provide a powerful approach to identify biomarkers for personalized medicine. Particularly, biomarkers for early detection, prognosis and therapeutic intervention of bone cancers, especially osteosarcomas, are missing. Initially, we compared two-dimensional gel electrophoresis (2-DE)-based protein expression pattern between cell lines of fetal osteoblasts, osteosarcoma and pulmonary metastasis derived from osteosarcoma. Two independent statistical analyses by means of PDQuest® and SameSpot® software revealed a common set of 34 differentially expressed protein spots (p < 0.05). 17 Proteins were identified by mass spectrometry and subjected to Ingenuity Pathway Analysis resulting in one high-ranked network associated with Gene Expression, Cell Death and Cell-To-Cell Signaling and Interaction. Ran/TC4-binding protein (RANBP1) and Cathepsin D (CTSD) were further validated by Western Blot in cell lines while the latter one showed higher expression differences also in cytospins and in clinical samples using tissue microarrays comprising osteosarcomas, metastases, other bone malignancies, and control tissues. The results show that protein expression patterns distinguish fetal osteoblasts from osteosarcomas, pulmonary metastases, and other bone diseases with relevant sensitivities between 55.56% and 100% at ≥87.50% specificity. Particularly, CTSD was validated in clinical material and could thus serve as a new biomarker for bone malignancies and potentially guide individualized treatment regimes.


Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin.

  • Lahiru Gangoda‎ et al.
  • Oncotarget‎
  • 2015‎

Neuroblastoma arises from the sympathetic nervous system and accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc is reported to occur in more than 20% of patients. While N-Myc amplification status strongly correlates with higher tumour aggression and resistance to treatment, the role of N-Myc in the aggressive progression of the disease is poorly understood. N-Myc being a transcription factor can modulate the secretion of key proteins that may play a pivotal role in tumorigenesis. Characterising the soluble secreted proteins or secretome will aid in understanding their role in the tumour microenvironment, such as promoting cancer cell invasion and resistance to treatment. The aim of this study is to characterise the secretome of human malignant neuroblastoma SK-N-BE2 (N-Myc amplified, more aggressive) and SH-SY5Y (N-Myc non-amplified, less aggressive) cells. Conditioned media from SK-N-BE2 and SH-SY5Y cell lines were subjected to proteomics analysis. We report a catalogue of 894 proteins identified in the secretome isolated from the two neuroblastoma cell lines, SK-N-BE2 and SH-SY5Y. Functional enrichment analysis using FunRich software identified enhanced secretion of proteins implicated in cysteine peptidase activity in the aggressive N-Myc amplified SK-N-BE2 secretome compared to the less tumorigenic SH-SY5Y cells. Protein-protein interaction-based network analysis highlighted the enrichment of cathepsin and epithelial-to-mesenchymal transition sub-networks. For the first time, inhibition of cathepsins by inhibitors sensitized the resistant SK-N-BE2 cells to doxorubicin as well as decreased its migratory potential. The dataset of secretome proteins of N-Myc amplified (more aggressive) and non-amplified (less aggressive) neuroblastoma cells represent the first inventory of neuroblastoma secretome. The study also highlights the prominent role of cathepsins in the N-Myc amplified neuroblastoma pathogenesis. As N-Myc amplification correlates with aggressive neuroblastoma and chemotherapy-based treatment failure, co-treatment with cathepsin inhibitors might be a better avenue for disease management.


Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells.

  • Anne-Sophie Bach‎ et al.
  • Oncotarget‎
  • 2015‎

The lysosomal protease cathepsin D (Cath-D) is overproduced in breast cancer cells (BCC) and supports tumor growth and metastasis formation. Here, we describe the mechanism whereby Cath-D is accumulated in the nucleus of ERα-positive (ER+) BCC. We identified TRPS1 (tricho-rhino-phalangeal-syndrome 1), a repressor of GATA-mediated transcription, and BAT3 (Scythe/BAG6), a nucleo-cytoplasmic shuttling chaperone protein, as new Cath-D-interacting nuclear proteins. Cath-D binds to BAT3 in ER+ BCC and they partially co-localize at the surface of lysosomes and in the nucleus. BAT3 silencing inhibits Cath-D accumulation in the nucleus, indicating that Cath-D nuclear targeting is controlled by BAT3. Fully mature Cath-D also binds to full-length TRPS1 and they co-localize in the nucleus of ER+ BCC where they are associated with chromatin. Using the LexA-VP16 fusion co-activator reporter assay, we then show that Cath-D acts as a transcriptional repressor, independently of its catalytic activity. Moreover, microarray analysis of BCC in which Cath-D and/or TRPS1 expression were silenced indicated that Cath-D enhances TRPS1-mediated repression of several TRPS1-regulated genes implicated in carcinogenesis, including PTHrP, a canonical TRPS1 gene target. In addition, co-silencing of TRPS1 and Cath-D in BCC affects the transcription of cell cycle, proliferation and transformation genes, and impairs cell cycle progression and soft agar colony formation. These findings indicate that Cath-D acts as a nuclear transcriptional cofactor of TRPS1 to regulate ER+ BCC proliferation and transformation in a non-proteolytic manner.


Sub-lethal oxidative stress induces lysosome biogenesis via a lysosomal membrane permeabilization-cathepsin-caspase 3-transcription factor EB-dependent pathway.

  • San Min Leow‎ et al.
  • Oncotarget‎
  • 2017‎

Here we provide evidence to link sub-lethal oxidative stress to lysosome biogenesis. Exposure of cells to sub-lethal concentrations of exogenously added hydrogen peroxide resulted in cytosol to nuclear translocation of the Transcription Factor EB (TFEB), the master controller of lysosome biogenesis and function. Nuclear translocation of TFEB was dependent upon the activation of a cathepsin-caspase 3 signaling pathway, downstream of lysosomal membrane permeabilization and accompanied by a significant increase in lysosome numbers as well as induction of TFEB-dependent lysosome-associated genes expression such as Ctsl, Lamp2 and its spliced variant Lamp2a, Neu1and Ctsb and Sqstm1 and Atg9b. The effects of sub-lethal oxidative stress on lysosomal gene expression and biogenesis were rescued upon gene silencing of caspase 3 and TFEB. Notably, caspase 3 activation was not associated with phenotypic hallmarks of apoptosis, evidenced by the absence of caspase 3 substrate cleavage, such as PARP, Lamin A/C or gelsolin. Taken together, these data demonstrate for the first time an unexpected and non-canonical role of a cathepsin-caspase 3 axis in the nuclear translocation of TFEB leading to lysosome biogenesis under conditions of sub-lethal oxidative stress.


Autophagy-related genes are induced by histone deacetylase inhibitor suberoylanilide hydroxamic acid via the activation of cathepsin B in human breast cancer cells.

  • Han Han‎ et al.
  • Oncotarget‎
  • 2017‎

Autophagy is involved in modulating tumor cell motility and invasion, resistance to epithelial-to-mesenchymal transition, anoikis, and escape from immune surveillance. We have previous shown that SAHA is capable to induce several apoptosis and autophagy-related gene expression in breast cancers. However, the exact mechanisms of autophagy activation in this context have not been fully identified. Our results showed that the expression and the activity of Cathepsin B (CTSB), one of the major lysosomal cysteine proteases, were significantly increased in MDA-MB- 231 and MCF-7 cells upon SAHA treatment. We confirmed that Cystatin C, a protease inhibitor, significantly inhibited the expression of CTSB induced by SAHA on breast cancer cells. We demonstrated that SAHA is able to promote the expression of LC3II, a key member in the maturation of the autophagosome, the central organelle of autophagy in breast cancer cells. However, SAHA induced LC3II expression is effectively suppressed after the addition of Cystatin C to the cell culture. In addition, we identified a number of genes, as well as the mitogen-activated protein kinase (MAPK) signaling that is potentially involved in the action of SAHA and CTSB in the breast cancer cells. Overall, our results revealed that the autophagy-related genes are induced by SAHA via the activation of CTSB in breast cancer cells. An improved understanding of SAHA molecular mechanisms in breast cancer may facilitate SAHA clinical use and the selection of suitable combinations.


Eupafolin enhances TRAIL-mediated apoptosis through cathepsin S-induced down-regulation of Mcl-1 expression and AMPK-mediated Bim up-regulation in renal carcinoma Caki cells.

  • Min Ae Han‎ et al.
  • Oncotarget‎
  • 2016‎

Eupafolin, a flavone found in Artemisia princeps, has been reported for its anti-tumor activity in several cancer cells. In this study, we examined whether eupafolin could sensitize TRAIL-mediated apoptosis in human renal carcinoma Caki cells. We found that eupafolin alone and TRAIL alone had no effect on apoptosis. However, combined treatment with eupafolin and TRAIL markedly induced apoptosis in human renal carcinoma (Caki) cells, glioma cells (U251MG), and prostate cancer cells (DU145), but not normal cells [mesangial cells (MC) and normal mouse kidney cells (TCMK-1)]. Eupafolin induced down-regulation of Mcl-1 expression at the post-translational levels in cathepsin S-dependent manner, and over-expression of Mcl-1 markedly blocked apoptosis induced by combined treatment with eupafolin and TRAIL. In addition, eupafolin increased Bim expression at the post-translational levels via AMP-activated protein kinase (AMPK)-mediated inhibition of proteasome activity. Knock-down of Bim expression by siRNA inhibited eupafolin plus TRAIL-induced apoptosis. Furthermore, combined treatment with eupafolin and TRAIL reduced tumor growth in xenograft models. Taken together, these results suggest that eupafolin enhanced TRAIL-mediated apoptosis via down-regulation of Mcl-1 and up-regulation of Bim in renal carcinoma Caki cells.


Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells.

  • Janja Završnik‎ et al.
  • Oncotarget‎
  • 2017‎

Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro, indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-β pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.


Regulation of split anergy in natural killer cells by inhibition of cathepsins C and H and cystatin F.

  • Špela Magister‎ et al.
  • Oncotarget‎
  • 2015‎

Freshly isolated human primary NK cells induce preferential lysis of Oral Squamous Carcinoma Stem Cells (OSCSCs) when compared to differentiated Oral Squamous Carcinoma Cells (OSCCs), while anti-CD16 antibody and monocytes induce functional split anergy in primary NK cells by decreasing the cytotoxic function of NK cells and increasing the release of IFN-γ. Since NK92 cells have relatively lower levels of cytotoxicity when compared to primary NK cells, and have the ability to increase secretion of regulatory cytokines IL-10 and IL-6, we used these cells as a model of NK cell anergy to identify and to study the upstream regulators of anergy. We demonstrate in this paper that the levels of truncated monomeric cystatin F, which is known to inhibit the functions of cathepsins C and H, is significantly elevated in NK92 cells and in anergized primary NK cells. Furthermore, cystatin F co-localizes with cathepsins C and H in the lysosomal/endosomal vesicles of NK cells. Accordingly, the mature forms of aminopeptidases cathepsins C and H, which regulate the activation of effector granzymes in NK cells, are significantly decreased, whereas the levels of pro-cathepsin C enzyme is increased in anergized NK cells after triggering of the CD16 receptor. In addition, the levels of granzyme B is significantly decreased in anti-CD16mAb and target cell anergized primary NK cells and NK92 cells. Our study provides the cellular and molecular mechanisms by which target cells may utilize to inhibit the cytotoxic function of NK cells.


Heat stress induces intestinal injury through lysosome- and mitochondria-dependent pathway in vivo and in vitro.

  • Gao Yi‎ et al.
  • Oncotarget‎
  • 2017‎

Damage to the small intestine secondary to heat stroke is a major factor in heat stroke-related morbidity and mortality. However, the underlying mechanisms by which heat stroke causes small intestinal lesions and dysfunction remain unclear. To explore the pathogenesis of small intestinal tissue and epithelial cell injury, the SW480 cell heat stress model and the mice heat stroke model were established to mimic heat stroke. Morphologic changes in intestinal tissue and increased TUNEL-positive index were induced by heat stress in vivo. Heat stress activated the lysosomal-mitochondrial apoptotic pathway in SW480 cells, increasing intracellular reactive oxygen species and causing lysosomal membrane permeabilization with subsequent release of cathepsin B to the cytosol, mitochondrial depolarization, and cytochrome C release to cytosol. An increase in the Bax/Bcl2 ratio, caspase-9 and caspase-3 were observed. N-Acetyl-L-Cysteine was shown to inhibit ROS generation, suppress permeabilization of lysosomal membranes, decrease levels of cathepsin B and cytochrome C in the cytosol, and inhibit Bax/Bcl2 ratio, caspase-9 and caspase-3 activity both in vitro and in vivo. Mitochondrial damage was alleviated when the models were pre-treated with CA-074 Me both in vitro and in vivo, decreasing cathepsin B and cytochrome C levels in the cytosol, Bax/Bcl2 ratio, caspase-9 and caspase-3 activity. In our models, heat stress-induced apoptosis of small intestinal tissue and epithelial cells through accumulation of ROS and activation of the lysosomal-mitochondrial apoptotic pathway involved the release of cathepsin B. These findings may offer potentially pharmaceutical targets and strategies to repair intestinal injury caused by heat stroke.


Activation of NLRP3 inflammasomes in mouse hepatic stellate cells during Schistosoma J. infection.

  • Nan Meng‎ et al.
  • Oncotarget‎
  • 2016‎

The major pathological changes during Schistosoma J. infection are characterized by granulomatous inflammation in the liver, a cellular immune response to schistosomal egg antigens. The molecular mechanisms initiating or promoting this schistosomal granulomatous inflammation remain poorly understood. In the present study, we first demonstrated that in mice infected with Schistosoma J. for 6 weeks exhibited increased levels of IL-1β in liver, a major product of NLRP3 inflammasomes and collagen deposition around the eosinophilic granuloma with Schistosoma J. eggs, which was substantially attenuated by caspase-1 inhibitor, YVAD. This activation of the NLRP3 inflammasome occurred in hepatic stellate cells (HSCs), as shown by a marked increase in co-localization of IL-1β with HSCs marker, desmin. Using isolated, cultured mouse HSCs, we further explored the mechanisms by which soluble egg antigen (SEA) from Schistosoma J. activates NLRP3 inflammasomes. SEA induced the formation and activation of NLRP3 inflammasomes, which was associated with both redox regulation and lysosomal dysfunction, but not with potassium channel activation. These results suggest that NLRP3 inflammasome activation in HSCs may serve as an early mechanism to turn on the inflammatory response and thereby instigate liver fibrosis during Schistosoma J infection.


Cyr61 and YB-1 are novel interacting partners of uPAR and elevate the malignancy of triple-negative breast cancer.

  • Michaela C Huber‎ et al.
  • Oncotarget‎
  • 2016‎

The triple-negative breast cancer (TNBC) is a very aggressive tumor type often occurring in young women and is associated with a bad prognosis for the patients. TNBC lacks established targets for breast cancer therapy, such as the estrogen receptor (ER), progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2). Therefore, novel therapeutic targets and strategies are needed for an improved treatment of this breast cancer subtype. TNBC and respective cell lines often overexpress proteins of the urokinase plasminogen activator system (uPAS) including uPA, its receptor uPAR and inhibitor PAI-1, which together with co-factors contribute to the malignancy of TNBC. Here, two novel interacting partners of uPAR, the cysteine-rich angiogenic inducer 61 (Cyr61) and the Y-box-binding protein 1 (YB-1) were identified and their differential expression demonstrated in TNBC cells as well as in tumors. In the TNBC cohort, both interactors significantly correlated with expression levels of cathepsin B, c-Met and the tumor grade. In addition, expression levels of Cyr61 significantly correlated with cathepsin D (p=0.03), insulin receptor (p≤0.001), insulin-like growth factor receptor 1 (IGF1R, p=0.015) and also with YB-1 (p=0.0004) levels. The interactions of uPAR with Cyr61 significantly correlated with expression levels of tumor-promoting biomarkers including plasminogen (p=0.0014), cathepsin B (p=0.032), c-Met (p=0.0192) as well as with the tumor grade (p=0.02). In multivariate survival analysis, YB-1 showed independent prognostic value (p=0.01). As the novel interacting partners, also together with uPAR, contribute to tumor progression and metastasis, both may be potential therapeutic targets in breast cancer.


Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis.

  • Zizhen Gong‎ et al.
  • Oncotarget‎
  • 2016‎

Accumulation of hydrophobic bile acids in the liver contributes to cholestatic liver injury. Inflammation induced by excessive bile acids is believed to play a crucial role, however, the mechanisms of bile acids triggered inflammatory response remain unclear. Recent studies have highlighted the effect of NLRP3 inflammasome in mediating liver inflammation and fibrosis. In this study, we for the first time showed that chenodeoxycholic acid (CDCA), the major hydrophobic primary bile acid involved in cholestatic liver injury, could dose-dependently induce NLRP3 inflammasome activation and secretion of pro-inflammatory cytokine-IL-1β in macrophages by promoting ROS production and K+ efflux. Mechanistically, CDCA triggered ROS formation in part through TGR5/EGFR downstream signaling, including protein kinase B, extracellular regulated protein kinases and c-Jun N-terminal kinase pathways. Meanwhile, CDCA also induced ATP release from macrophages which subsequently causes K+ efflux via P2X7 receptor. Furthermore, in vivo inhibition of NLRP3 inflammasome with caspase-1 inhibitor dramatically decreased mature IL-1β level of liver tissue and ameliorated liver fibrosis in bile duct ligation (BDL) mouse model. In conclusion, excessive CDCA may represent an endogenous danger signal to activate NLRP3 inflammasome and initiate liver inflammation during cholestasis. Our finding offers a mechanistic basis to ameliorate cholestatic liver fibrosis by targeting inflammasome activation.


Marine alkaloid Monanchocidin a overcomes drug resistance by induction of autophagy and lysosomal membrane permeabilization.

  • Sergey A Dyshlovoy‎ et al.
  • Oncotarget‎
  • 2015‎

Monanchocidin A (MonA) is a novel alkaloid recently isolated from the marine sponge Monanchora pulchra. The compound reveals cytotoxic activity in genitourinary cancers including cisplatin-sensitive and -resistant germ cell tumor (GCT) cell lines, hormone-sensitive and castration-resistant prostate carcinoma cell lines and different bladder carcinoma cell lines. In contrast, non-malignant cells were significantly less sensitive. MonA is highly synergistic with cisplatin in GCT cells. Induction of autophagy at lower and lysosomal membrane permeabilization (LMP) at higher concentrations were identified as the dominating modes of action. Cytotoxicity and protein degradation could be inhibited by 3-methyladenine, an inhibitor of autophagy. LMP was confirmed by loss of acridine orange staining of lysosoms and by release of cathepsin B. In conclusion, MonA exerts cytotoxic activity by mechanisms different from "classical" apoptosis, and could be a promising new compound to overcome resistance to standard therapies in genitourinary malignancies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: