Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Dynamics of beta-catenin interactions with APC protein regulate epithelial tubulogenesis.

  • A L Pollack‎ et al.
  • The Journal of cell biology‎
  • 1997‎

Epithelial tubulogenesis involves complex cell rearrangements that require control of both cell adhesion and migration, but the molecular mechanisms regulating these processes during tubule development are not well understood. Interactions of the cytoplasmic protein, beta-catenin, with several molecular partners have been shown to be important for cell signaling and cell-cell adhesion. To examine if beta-catenin has a role in tubulogenesis, we tested the effect of expressing NH2-terminal deleted beta-catenins in an MDCK epithelial cell model for tubulogenesis. After one day of treatment, hepatocyte growth factor/scatter factor (HGF/ SF)-stimulated MDCK cysts initiated tubulogenesis by forming many long cell extensions. Expression of NH2-terminal deleted beta-catenins inhibited formation of these cell extensions. Both DeltaN90 beta-catenin, which binds to alpha-catenin, and DeltaN131 beta-catenin, which does not bind to alpha-catenin, inhibited formation of cell extensions and tubule development, indicating that a function of beta-catenin distinct from its role in cadherin-mediated cell-cell adhesion is important for tubulogenesis. In cell extensions from parental cysts, adenomatous polyposis coli (APC) protein was localized in linear arrays and in punctate clusters at the tips of extensions. Inhibition of cell extension formation correlated with the colocalization and accumulation of NH2-terminal deleted beta-catenin in APC protein clusters and the absence of linear arrays of APC protein. Continued HGF/ SF treatment of parental cell MDCK cysts resulted in cell proliferation and reorganization of cell extensions into multicellular tubules. Similar HGF/SF treatment of cysts derived from cells expressing NH2-terminal deleted beta-catenins resulted in cells that proliferated but formed cell aggregates (polyps) within the cyst rather than tubules. Our results demonstrate an unexpected role for beta-catenin in cell migration and indicate that dynamic beta-catenin-APC protein interactions are critical for regulating cell migration during epithelial tubulogenesis.


NH2-terminal deletion of beta-catenin results in stable colocalization of mutant beta-catenin with adenomatous polyposis coli protein and altered MDCK cell adhesion.

  • A I Barth‎ et al.
  • The Journal of cell biology‎
  • 1997‎

beta-Catenin is essential for the function of cadherins, a family of Ca2+-dependent cell-cell adhesion molecules, by linking them to (alpha)-catenin and the actin cytoskeleton. beta-Catenin also binds to adenomatous polyposis coli (APC) protein, a cytosolic protein that is the product of a tumor suppressor gene mutated in colorectal adenomas. We have expressed mutant beta-catenins in MDCK epithelial cells to gain insights into the regulation of beta-catenin distribution between cadherin and APC protein complexes and the functions of these complexes. Full-length beta-catenin, beta-catenin mutant proteins with NH2-terminal deletions before (deltaN90) or after (deltaN131, deltaN151) the alpha-catenin binding site, or a mutant beta-catenin with a COOH-terminal deletion (delta C) were expressed in MDCK cells under the control of the tetracycline-repressible transactivator. All beta-catenin mutant proteins form complexes and colocalize with E-cadherin at cell-cell contacts; deltaN90, but neither deltaN131 nor deltaN151, bind alpha-catenin. However, beta-catenin mutant proteins containing NH2-terminal deletions also colocalize prominently with APC protein in clusters at the tips of plasma membrane protrusions; in contrast, full-length and COOH-terminal-deleted beta-catenin poorly colocalize with APC protein. NH2-terminal deletions result in increased stability of beta-catenin bound to APC protein and E-cadherin, compared with full-length beta-catenin. At low density, MDCK cells expressing NH2-terminal-deleted beta-catenin mutants are dispersed, more fibroblastic in morphology, and less efficient in forming colonies than parental MDCK cells. These results show that the NH2 terminus, but not the COOH terminus of beta-catenin, regulates the dynamics of beta-catenin binding to APC protein and E-cadherin. Changes in beta-catenin binding to cadherin or APC protein, and the ensuing effects on cell morphology and adhesion, are independent of beta-catenin binding to alpha-catenin. These results demonstrate that regulation of beta-catenin binding to E-cadherin and APC protein is important in controlling epithelial cell adhesion.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: